38. Exercise physiology Flashcards Preview

Year 2 CR > 38. Exercise physiology > Flashcards

Flashcards in 38. Exercise physiology Deck (28):
1

What are the two types of exercise and how does muscle usage differ accordingly?

Dynamic exercise - rhythmical movements of joints and contraction and relaxation of muscles e.g. swimming, running and cycling
Static exercise - maintained contraction for a length of time e.g. lifting

2

What are the sources of energy for skeletal muscle function?

Immediate - creatine phosphate/phosphocreatine (no o2)
Non-oxidative - anaerobic glycolysis
Oxidative - aerobic/oxidative metabolism

3

Describe the immediate source of energy for skeletal muscles

Creatine phosphate - high concentrations of this in the muscle
This provides a high storage of high-potential phosphate to maintain contraction
Catalysed by creatine kinase

4

Describe anaerobic glycolysis and the consequences of this

Excess pyruvate is converted to lactate
There is a lactic acid build up
So there is a drop in the pH and the muscle begins to fatigue

5

What is 'VO2'?

This is the volume of oxygen that is consumed during oxidative metabolsim

6

What is 'VO2 max'?

This is the highest peak oxygen uptake that an individual can obtain during dynamic exercise (whilst using large muscle groups during a few minutes under normal conditions at sea level)
This is reached when the oxygen consumption remains at a steady state despite an increase in workload

7

What is the significance of VO2 max?

VO2 max reflects the aerobic physical fitness of the individual
Is an important determinant of their endurance capacity during prolonged, sub-maximal exercise

8

What is the anaerobic threshold?

(aka. the lactate threshold)
This is where further increases in work are not accompanied by oxygen uptake - the blood lactate rises steeply
SO the anaerobic threshold is the point where lactate begins to accumulate in the bloodstream
Varies from person to person

9

How can the anaerobic threshold be improved?

Untrained individuals have a low AT whilst elite endurance athletes have a high AT

10

What is the aim of the cardiovascular system during exercise?

Aim is to increase oxygen delivery to the skeletal and cardiac muscle

11

What are the main responses of the CVS during exercise?

1. Rise in cardiac output via an increase in SV and HR
2. Redistribution of larger proportion of CO to the active muscles

12

How is the heart rate increased by the CVS?

Generally, HR is kept low by the vagus nerve (parasympathetic) so during exercise, there is a reduced activity of parasympathetic and increased activity of sympathetic nerves
Sympathetic nerves also act to cause partial vasoconstriction of blood vessels
Together this results in an increased HR and mobilisation of blood from the great veins

13

How is the stroke volume increased by the CVS?

Increased venous return
Increased end diastolic volume (and hence increased preload)
According to Starling's law, this increases the SV

Sympathetic activity has a positive inotropic response on the heart (increased force of contractility)

14

What is the main component that can increase the cardiac output?

Mainly due to an increased heart rate - the stroke volume reaches maximum levels at a fairly moderate exercise intensity

15

What is 'heart remodelling'?

This is a long term response of the heart to increased levels of exercise (physiological cause) pr can be due to a disease (pathological cause)
Heart adapts to sustained increases in BP by increasing muscle mass via hypertrophy (increased cardiac myocyte size)

16

Why do athletes tend to have Bradycardia?

Due to the volume induced cardiac hypertrophy, the resting end diastolic volume and stroke volume is increased
SO to maintain the CO, the HR is reduced
SO athletes typically have a slower resting HR when compared to untrained individuals

17

By how much does blood flow to the muscles increase during exercise?

During rest, about 2-25% of the CO is to the muscles
During maximal exercise, about 90% of the increased CO is to the muscles

18

What are the two mechanisms that control the redistribution of flow during exercise?

1. Systemic regulation
2. Local control

19

Describe systemic regulation of redistribution of blood flow

Mechanism to control redistribution of blood flow during exercise
Involves adrenergic receptors (adrenoreceptors) which respond to the increased sympathetic outflow

Alpha adrenoreceptors constrict the vessels in the gut and cause vasoconstriction of veins
Beta 1 adrenoreceptors (in the heart) act to increase the rate and force of myocardial contraction
Beta 2 receptors act to relax the muscle and increase the ventilation and oxygen uptake and cause vasodilation of blood (especially towards skeletal muscle)

20

Describe local control of redistribution of blood flow

Local regulatory factors strongly determine blood flow:
Endothelial factors - such as NO that act to relax smooth muscle and cause dilation of blood vessels
Tissue factors - adenosine, inorganic phosphates, CO2, H+, K+ that are released from contracting muscles

21

How does the mean arterial blood blood pressure change during exercise?

Although the total peripheral resistance decreases during exercise, the mean arterial blood pressure is raised only slightly
This is because the decreases in TPR are offset by increases in CO

22

How does the systolic and diastolic blood pressure change during exercise?

Systolic blood pressure increases due to the increased force of ventricular contraction
The diastolic pressure remains relatively stable or can even decrease slightly

23

What is the aim of the respiratory system during exercise?

To meet the body's increased oxygen requirements via increased pulmonary minute ventilation and oxygen extraction in tissues

24

To what extent does ventilation increase during exercise?

Ventilation at rest is about 8l/minute but during heavy exercise, can increase to 100l/minute or more

At moderate work rates, the steady state ventilation is directly proportional to the work done (measured via oxygen uptake)
During severe exercise, the increase in ventilation is disproportionately large in relating to oxygen uptake

25

How is ventilation increased?

Via an increased respiratory rate and increased tidal volume

26

How can increased levels of oxygen be delivered to the tissues during exercise?

This is facilitated via a decrease in the Hb-O2 binding affinity during exercise

27

What is meant by '(Excess) post-exercise oxygen consumption' (EPOC)

Essentially, as the body starts exercising, the oxygen uptake does not immediately rise to meet the demand and instead there is a delay.
SO there is an oxygen deficit before the oxygen demand is met
SO once exercise stops, the level of the oxygen being taken up is greater than the demand of the body pos-exercise
This is believed to be due to take up the oxygen that was required during the initial oxygen deficit

28

What are the neurological factors involved in the metabolic changes during exercise?

Not completely sure yet but believed to be:
Baroreceptor reflex sensitivity
Metaboreceptors
Premotor area of the cerebral cortex
Peripheral chemoreceptors