Auditory System Flashcards

1
Q

Congential Hearing Loss: General information

A

Consequences: poor language and behavioural developments, lower literacy and academic achievements

Genetic factors are thought to cause more than 50% of all incidents of congenital hearing loss in children

Currently >100 genes underpinning deafness

Other causes: intrauterine infectons, (German measles, cytomegalovirus, and HSV), prematurity, hypoxia, hyperbilirubinemia, maternal alcohol/drug use

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Acquired Hearing Loss: Infection/Inflammation

A
  • The spread of a bacterial or viral infection from the middle ear (otitis media)
  • As a direct consequence of infection or tissue injury to the inner ear or hearing nerve
  • Meningitis is also a source of inner ear inflammation and results from infection through the CSF
  • The inner ear can rapidly mount an inflammatory response which can cause bystander tissue injury. This inflammatory response can damage delicate structures of the inner ear and cause permanent hearing loss. Macrophages and other immune cell release inflammatory cytokines
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Most common causes of acquired hearing loss

A
  • Presbyacusis
  • Noise trauma
  • Ototoxic drugs
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Common features of hearing loss pathology

A
  • Hair cells damaged and replaced by scar tissues
  • A reduction in density of nerves
  • Drugs & Age: Initial loss of basal cells and high frequencies. Noise: frequency-related damage
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Effects of noise on the cochlea

A

Metabolic damange not mechanical unless acute impulse noise

  • OHC - clashing of tectorial membrane and OHC causes damage at high noises. Cell death by apoptosis due to oxidative stress
  • Spiral ligament - damange to spiral ligament type 4 fibrocytes which are important for recycling of K+. Atrophy of intermediate cells which secrete K+, reduction in endocochlear potential.
  • IHC - excessive glutamate causes swelling of spiral ganglion neuron. More resistant to ROS but excessive glutamate causes damange.
  • Pillar cells - acute exposure to impulse noise causes buckling and therefore results in collapsing of the organ of corti.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Glutamate excitotoxicity

A

Excessive release causes swelling of receptor due to water entry, can be repaired but continuous abuse causes entry of Ca2+ through NMDA channels which activates apoptotic and necrotic pathways leading to spiral ganglion neuron death. Generation of ROS and mitochondrial dysfunction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Inflammation from noise exposure

A

CD45+ inflammatory cells and macrophages and other cells invade through spiral ligament and cause damage.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Oxidative stress and noise-induced hearing loss

A

Oxidative stress in the cochlea may be a common factor for hearing loss from noise, aminoglycoside antibiotics, ototoxic anticancer drugs and aging.

Free radical are capable of breaking down lipid and protein molecules, damaging DNA and triggering cell death, all of which contribute to the loss of function after noise exposure.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

How are ROS/free radicals formed as a result of noise?

A

During noise exposure, the electron transport chain of the mitochondira uses large amounts of oxygen, which can then create large amounts of superoxide as an unwanted byproduct.
The increased superoxide can then react with other molecules to generate higher levels of ROS in the cochlea

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Examples of ROS

A

Oxygen based molecules that act as free radicals
* Superoxide (O2-)
* Hydroxyl radical
* Perioxynitrite radical (ONOO)

Readily capable of generating free radicals:
* Hydrogen perioxide
* Ozone

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Equations of forming ROS

A

O2 -> to superoxide ions via an enzyme (NADPH oxidase…)
Superoxide can react with NO to form ONOO
Superoxide can form hydrogen peroxide through superoxide mutase and copper (II)
Hydrogen perioxide can undergo fenton reaction to produce hydroxyl free radical.
Hydrogen peroxide can react with catalase and Fe (II) to give water and O2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Apoptosis process - hair cell

A

Normal -> Cell shrinkage, membrane blebbing -> nuclear fragmentation, chromatin condensation, formation of apoptotic bodies

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Necrotic process - hair cell

A

Normal -> cell swelling -> rupture of plasma membrane, post-lytic DNA fragmentation. Causes inflammatory reaction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Presbyacusis - General information

A
  • A mixture of acquired auditory stresses, trauma and otological diseases superimposed upon an intrinsic, genetically controlled, ageing process
  • The loss of hearing sensitivity begins at the highest frequency
  • Untreated hearing impairment contributes to social isolation, depression, loss of self-esteem and cognitive decline

Characterised by:
* Reduced hearing sensitivity and speech understanding in noisy environments
* Slowed central processing of acoustic information
* Impaired localisation of sound sources in horizontal plane.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Age-related Cochlear Pathology

A

Loss of OHC and spiral ganglion neurons
Stria Vascularis - highest impact mainly vascular impact leading to atrophy of SV and decreased secretion of K+

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Classification of Presbyacusis

A

Sensory (outer hair loss)
Neural (neuronal cell loss)
Metabolic (strial atrophy)
Mixed and indeterminate

Sensory presbyacusis related to accumulated environmental noise toxicity, whilst the strial pattern has a high heritability index.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Cochlear aging: animal studies

A
  • Gerbils raised in quiet have just as much or more hearing loss with age than group of noise-related animals - strongly suggesting genetic
  • Degeneration of the stria vasularis (marginal and intermediate cells) is the most prominent element
  • A loss of Na+,K+ ATPase results in reduced postassium secretion and decline in endocochlear potential (EP)
  • Degeneration of the stria vascularis and the resultant decline in EP has given rise to the dead battery theory of presbyacusis
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Animal models of presbyacusis

A

C57BL/6 mouse, early onset hearing loss, ARHL locus (ahl) that contributes to hearing loss in the C57BL/6 mouse has been mapped to chromosome 10. Carries a specific mutation in the cadherin 23 gene, which encodes a component of the hair cell tip-link.

CBA/CaJ mouse, late onset hearing loss. Carries the ahl-resistance gene.

Fisher 344 albino rat - model of sensory ARHL

Mongolian gerbil - model of strial ARHL

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Mechanisms of Presbyacusis

A

Genetic and environment factors
* Reduction of vascularisation in the stria vascularis
* Collagen damage - especially in spiral ligament fibrocytes which affects K+ cycling.
* Cumulative noise exposure - causes repeated oxidative stress causing massive apoptosis and necrosis. MtDNA damage which cant be repaired
* Oxidative stress and apoptosis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Ototoxicity

A

Two major classes of drugs can cause permanent hearing loss:
* Aminoglycoside antibiotics
* Platinum-based chemotherapeutic agens

Both damage the hair cells in the basal turn of the organ of Corti, spiral ganglion neurons and the lateral wall tissues resulting in functional deficits.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Aminoglycoside ototoxicity

A

Aminogylcoside antibiotics are used in treatment of TB and serious gram negative bacterial infections such as bacterial endocarditis, UTI and pneumonia.

AG enters and forms complex with Fe. Produces ROS. Activates JNK which leads to transcription of preapoptotic genes which put small holes in the mitochondria, leading to leakage of Cyt C and apoptosis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

What type of cancer is cisplatin and carboplatin used to treat and what are complications?

A
  • Testiciular
  • Ovarian
  • Bladder
  • Head and Neck
  • Lung

Complications: nephrotoxicity, neurotoxicity and ototoxicity

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Cisplatin ototoxicity: General

A
  • High incidence of hearing loss (up to 80%)
  • Ototoxicity: tinnitus and bilateral frequency high frequency sensorineural hearing loss
  • Involves the production of ROS and depletion of glutathione and antioxidant enzymes (SOD, catalase and glutathione perioxidase) in the cochlea
  • Excessive ROS production activates primarily caspase-depedent apoptotic pathways
  • Ototoxicity can be ameliorated by protective agents targeting oxidative stress and apoptosis.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Cisplatin Ototoxicity: Mechanism

A

CP form complex with monohydrated complex (MHC), activation of enzyme NOX-3. Production of ROS and activation of JNK. Transcription of proapoptotic genes. Mitochondira holes, cyt C and apoptosis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Pharmacological interventions to reduce hearing loss

A
  1. Restoring the normal balance of free radical with antioxidants
  2. Reducing glutamate excitotoxicty with NMDA receptor antagonists
  3. Maintaining adequate cochlear blood floow during and after noise
  4. Supressing inflammation
  5. Inhibiting pathways to apoptotic cell death to preserve hair cells
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Free Radical/Antioxidant balance in the cochlea

A

Increasing cochlear antioxidant supplies can be substantially prevent hair cell damage and hearing loss.

Antioxidant levels can be increaed in two ways:
1. Application of exogenous antioxidant molecules locally or systemically into the body
2. Endogenously by using sound conditioning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Examples of antioxidants

A

Antioxidants are molecules that scavenge ROS and convert them to less dangerous molecules

Mammals maintain complex system of multiple types of antioxidants such as glutathione, vitamins A, C and E, magnesium as well as enzymes such as catalase, superoxide dismutase and various peroxidases

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Effects of Sound conditioning in animals

A

Conditioned animals with previous exposure to low noise for long periods of time resulted in mich higher antioxidant levels

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Experimental therapies: Hair cell regeneration

A

Gene transfer technology
Replacement of hair cells by stem cells
Atoh1/GFP+ cells show morphological and molecular correlates of innervation and synaptogeneis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Hereditary Hearing Loss (HHL)

A

Accounts for about 50% of congenital hearing loss
Over 100 genes underlying HHL
50% of these genes related to sensory hair cells

HHL classification according to the mode of transmission
Autosomal dominant
Autosomal recessive
X-chromosome-linked

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

DFNB9 Deafness

A

Inner hair cell synaptopathy
An auditory neuropathy defined as a hearing loss characterised by the absence of auditory brainstem responses with preserved function of the outer hair cells.

Due to a defect in synaptic protein otoferlin expressed in the inner hair cells.

Otoferlin knockout mice key to understanding DFNB9 pathogenesis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

Otoferlin - Ca2+ sensor role

A

It is a presynaptic protein which otoferlin acts as a calcium-sensitive scaffolding protein, localizing SNARE proteins proximal to the calcium channel so as to synchronize calcium influx with membrane fusion. It forms complex with ribbons allowing docking and therefore release

Otoferlin triggers synaptic vesicle-plasma membrane fusion at the IHC ribbon synapse. Degeneration process of the IHC active zone and some afferent neurones likely to take place in DFNB patients. Early cochlear implants expected to be of major help because it bypasses synpase.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

Usher syndrome: General information

A
  • USH is a monogenic sensory disability (autosomal recessive transmission)
  • Causes sensorineural hearing loss, retinitis pigmentosa and balance problems
  • 3-6% of all children who are deaf and another 3-6% of children who are hard-of-hearing have Usher syndrome
  • Juvenile age of onset, diffrential degree of hearing loss and balance problems, night blindess and decrease of visual acuity, starts off with periphery moves centrally later.
  • Three clinical subtypes; USH I,II and III
  • Types 1 and 2 are the most common and account for approximately 90-95% of all causes of children with USH
34
Q

Further information about Usher subtypes

A
35
Q

Diagnosis of Usher syndrome

A
  • Because USH affecs hearing, balance and vision diagnosis includes the evaluation of all three senses
  • Eye evaluation: visual field test, retinal examination and electroretinogram (ERG)
  • Hearing evaluation: audiometry
  • An electronystagmogram (ENG) measures involuntary eye movements that could signifiy and a balance problem
  • Early diagnosis of Usher syndrome is very important
36
Q

Usher syndrome: human and mouse causative genes and encoded proteins

A

Most of them target sensory hair cells
Hair bundle anomalies appear in the foetus around the time of maturation (USH I and USH II)
The photoreceptors in the retina also affected

37
Q

Usher Type III: hair cells

A

not fused upright
downwards fused
damaged cuticular plate

38
Q

Treatment for Usher syndrome

A
  • Currently, there is no cure for Usher snydrome
  • The best strategy involves early identification so that educational programs can begin as soon as possible
  • Treatment will include hearing aids, cochlear implants, orientation and independent living trains
  • High dose of vitamin A may slow the progression of retinitis pigmentosa
39
Q

Gap junction defects

A
  • Gap junctions play a key role in K+ cyclking in the cochlea and maintenance of the endocochlear potential (EP)
  • Cx26 and Cx30 the main connexins of the cochlear gap junctions forming two major cellular networks: epithelial and connective
  • Mutation in connexin 26 (Cx26 or GJB2) and Cx30 (GJB6) the major cause of congenital hearing loss
  • Mutations in connexins 29,31 and 32 also cause deafness
40
Q

Gap junction cellular networks in the cochlea

A

Connective tissue gap junction system
* Fibrocytes (SL)
* Strial basal and intermediate cells
* Limbal fibrocytes

The epithelial cell gap junction system
* Root cells
* Supporting cells
* Interdental cells

41
Q

Cx26 defect

A
  • Causative gene for DFNB1 and DFNA3 (a rare dominant form of deafness
  • Mutations in Cx26 highly prevalent in caucasian population and account for 30-50% of non-syndromic congenital hearing loss
  • A variety of mutations found to be responsible for DFNB1 (35delG point mutation most common)
  • Testing Cx26 point mutations is a priority in the molecular diagnosis
  • Cx26 and Cx30 located close together on the same chromosome, hence combined point mutations/deletions possible
  • Mouse models available
42
Q

Conditional Cx26 knockout mice

A
  • Affects only epithelial gap junction network in the cochlea
  • Moderate hearing impairment
  • A significant decrease in endolymphatic K+ concentration
  • EP reduced by more than 50%
  • Apoptosis in the organ of Corti from P14 onwards
  • The absence of Cx26 in the epithelial gap junction network results in a local increase in extracellular K+ concentration in the basal region of hair cells that might be toxic
  • Cx30 which co-localises with Cx26 in cochlear gap junctions is not able to compensate for the lack of Cx26.b
43
Q

Cx30 knockout mice

A
  • Display severe to profound hearing loss
  • From P13 onwards show complete lack of EP even before any histological alterations
  • Substantial cell death affecting both hair cells and supporting cells
  • Hearing function rescued in transgenic mice overexpressing Cx26 on a Cx30 – back ground.
  • There seems to be a quantitative rather than qualitative requirement for Cx30 .
44
Q

Diagnosis of hearing loss caused by mutations in the Cx26 gene

A
  • Hearing loss found at birth or in early childhood
  • Hearing loss mild,moderate, severe or profound
  • Hearing loss without any other medical problem (non-syndromic_
  • Hearing loss without obvious cause

Testing for Cx26 mutations:
* Identify the cause of hearing loss
* Excluse a syndromic form of hearing loss
* Predict the prognosis of hearing loss

45
Q

Vestibular disorders: General information

A
  • Symptoms can result from a peripheral or central vestibular disorder
  • Common symptoms: dizziness, vertigo and disequillibrium
  • The main causes of vertigo are benign paroxysmal positional vertigo, Menieres disease, vestibular neuritis and labyrinthitis
46
Q

Meniere’s disease: General information

A

Defined by the association of four symptoms
* Vertigo attacks
* Fluctuating hearing loss
* Tinnitus
* Auricular plenitude sensation (fulness in the ear)

Other symptoms include
* Diarrhea
* Headaches
* Pain or discomfort in the abdomen
* Nausea and vomiting
* Nystagmus (uncontrollable eye movments)

47
Q

Meniere’s disease: Pathophysiology

A

Distention of membranous labyrith by the endolym known as endolymphatic hydrops

48
Q

Meniere’s disease: Animal studies

A
  • Obliteration of the endolymphatic sac in the guinea pig consistently produces endolymphatic hydrops
  • The findings shows cytochemical and ultrastructural lesions affecting the fibrocytes within the spiral ligmanet, hair cells and cochlear neurons.
  • These changes occured before the develpoment of hydrops.
  • Type 1 and 2 fibrocytes of the spiral ligmanet are the most severely affected cochlear cells
  • Type 1 fibrocytes before hydrops showed increased immunostainings for the NAK2Cl cotransporter, decreased immunostaining for C-Jun-N-terminal kinase (JNK)
  • NKCC1 is involved in regulation of cellular volume in response to osmotic stress
  • Changes reflect compensatory mechanisms for regulation of cell volume
  • JNK is known to be a critical player in many forms of cellular stress responses. The decrease in staining for JNK indicates that the fibrocytes are under stress.
49
Q

Tympanometry

A
  • Air pressure is varied positive and negative relative to atmospheric and effects of air presure changes on how sound is transmitted through middle ear is measured
  • Tympanogram is graphic represenation of how sound travels through middle ear as a function of ear canal pressure
  • When ear drum is working well: little to no reflection
  • When ear drum not working well: lot of reflection
  • Also measures space: if ear drum perforated then lots of space
50
Q

Components of an acoustic immitance instrument

A
  • Sound source that generates a low frequency (usually 226 or 660 Hz) pure tone
  • Microphone that measures the reflected sound wave
  • Air pump and manometer which varies the air pressure within the ear canal
51
Q

Compliance curve: Type Ad

A

Floppy, dislocation of middle ear bones?

52
Q

Compliance curve: Type A

A

Normal

53
Q

Compliance curve: Type B

A

Fluid behind tympanic membrane so cannot move

54
Q

Compliance curve: Type C

A

Negative pressure - pulling in from middle ear
Can result from cold
Precursor to type B curve

55
Q

Compliance curve: Type As

A

Something to do with middle ear bones. Otosclerosis. Cochlea become occified. Often seen in pregnant woman due to hormonal changes

56
Q

Audiogram curve: Sloping Audiogram

A

Most common: lose high frequency hearing loss, aging or noise exposure. “Speech banana”

57
Q

Audiogram curve: Cookie-Bite Audiogram

A

Congenital hearing loss

58
Q

Audiogram curve: Flat Audiogram

A

Uncommon

59
Q

Audiogram curve: Reverse-Slope Audiogram

A

Meniere’s disease - balance problems, hearing fluctuates

60
Q

Audiogram curve: Tent-shaped Audiogram

A

Opposite of Cookie-Bite Audiogram

61
Q

Audiogram curve: Corner Audiogram

A

Progressive congenital hearing loss, candidate for bionic ear or cochlea implant.

62
Q

Three types of Hearing Loss

A

Conductive hearing loss, sensorineural hearing loss, mixed hearing loss

63
Q

Conductive hearing loss

A

Bone conduction better than air conduction

64
Q

Sensorineural hearing loss

A

Bone conduction = air conduction

65
Q

Mixed hearing hearing loss

A

Decrease bone and air conduction

66
Q

Mixed hearing loss

A

Decrease bone and air conduction

67
Q

Sensorineural hearing impairment resulsts in:

A

Hearing impairment: not simply a loss of sensitivty of the cochlea but strongly altered signal processing capabilities

Components:
* loss of audibility
* loss of frequency resolution - lose OHC tuning
* loss of compressive signal processing due to loss of outer hair cells

68
Q

Psychoacoustics

A

Broadened auditory filters - inability to resolve sounds
Loudness growth - recruitment, compression of range

69
Q

Perceptual consequences of hearing loss

A
  • Highly specialised mechanisms for signal analysis are strongly degraded
  • Mechanisms for separating sounds are missing
  • Speech intelligibility especially in noise is degraded
70
Q

How does a cochlea implant work?

A
  1. External speech processor captures sound and converts it to digital signals
  2. Processor sends digitial signals to internal implants
  3. Internal implant turns signals into electrical energy, sending it to an array inside the cochlea
  4. Electrodes stimulate hearing nerve, bypassing damaged hair cells and the brain perceives signals, you hear sound.
71
Q

Tinnitus definition

A

Perception of sound when there is no sound, theres no sound waving coming into the ear

72
Q

Objective tinnitus

A

Sound is coming from the body, clicking from palate, blood flow, eustachian tube etc

73
Q

Tinnitus disorder

A

Perception of sound has an impact on person’s daily life

74
Q

Male with tinnitus: associations

A

Hearing loss

75
Q

Females with tinnitus: associations

A

Hearing loss, Insomnia, Dizziness & Vertigo (hormones)

76
Q

65+ with tinnitus: associations

A

Memory problems, dizziness & vertigo, hearing loss, insomnia, vision problems

77
Q

Neural differences after general hearing loss

A

Cochlear nucleus and inferior colliculus increase in intensity after hearing loss

78
Q

Current treatments to tinnitus

A

Counselling - remove fear aound tinnitus, lifestyle changes, attention control, sensory management, perceptual training, adaptation

Hearing aids - reducing contrast of background noise, hearing loss like being put into a soundproof room so becomes detrimental

Masking - play another nicer sound

79
Q

Tinnitus: Emerging treatments

A

OTO-313
NMDA receptor antagonists

Brain stimulation - retraining with a patterened sound. Vagus and Tragus nerve have an impact on plasticity so hopefully can change underlying representation of tinnitus.

Tactile trigeminal nerve stimulation through tongue
Somatosensory stimulation through stimulation of nerves in neck

80
Q

Tinnitus: On going research

A

Metabolomics: Correlate metabolic changes with clinical characteristics of tinnitus and/or tinnitus-related distress. Identify tinnitus-causing metabolic networks. Develop personalized treatment targeting affected networks.

81
Q

Tinnitus: Precision Sound Therapy

A

Patient undergoes a clinic-based psycoacoustic and psychometric hearing and tinnitus assesment. An customized profule using AI is established using the clinician dashboard and fitting algorithms according to the patient’s needs and tinnitus assesment. Therapy is download to user’s smartphone.

AI can predict who will and won’t respond based on EEG.