Week 6: Descriptive Data Analysis Flashcards

1
Q

What is descriptive statistics?

A

Descriptive statistics = set of techniques for summarizing and displaying data.

LETS ASSUME…

Quantitative data
With scores on one or more variables - for several study participants.

It is important to DESCRIBE each variable individually

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

DESCRIBE the distribution of a Variable

A

The Distribution of a Variable

EVERY VARIABLE - has a distribution
= scores are distributed ACROSS the levels of that variable

EXAMPLE

Sample of 100 university students :)

the distribution of the variable “number of siblings” might be such that…

  • 10 of them have no siblings
  • 30 have one sibling
  • 40 have two siblings, and so on.

In the same sample, the distribution of the variable “sex” might be such that…

44 have a score of “male”
56 have a score of “female.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Describe a frequency table and why it is important?

A

Frequency Tables

One way to DISPLAY the distribution of a variable is in a frequency table.

EXAMPLE

Frequency table showing a hypothetical distribution of scores on the Rosenberg Self-Esteem Scale for a sample of 40 college students.

The first column lists the values of the variable—the possible scores on the Rosenberg scale

The second column lists the frequency of each score.

This table shows that there were three students who had self-esteem scores of 24, five who had self-esteem scores of 23, and so on.

From a frequency table like this, one can quickly see several important aspects of a distribution

  • including the RANGE of scores (from 15 to 24)
  • the most and least common scores (22 and 17, respectively)
  • EXTREME scores that stand out from the rest.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Explain 2 important points about frquency tables…

A

IMPORTANT - FREQUENCY TABLES

  1. the levels listed in the first column usually go from the highest at the top to the lowest at the bottom
  2. and they usually do not extend beyond the highest and lowest scores in the data.

EXAMPLE

ALTHOUGH scores on the Rosenberg scale can VARY from a high of 30 to a low of 0

THE TABLE ONLY includes levels from 24 to 15 because that range includes all the scores in this particular data set.

With MANY different scores across a WIDE range of values, it is often better to create a grouped frequency table,

—– in which the first column lists ranges of values
—– the second column lists the frequency of scores in each range.

Attached table - grouped frequency table showing a hypothetical distribution of simple reaction times for a sample of 20 participants.

GROUPED FREQUENCY TABLE - The ranges must all be of equal width, and there are usually between…
5 - 15

FREQUENCY TABLES Can also be used for categorical variables

Levels = category labels.

The order = somewhat arbitrary
Listed from the most frequent at the top to the least frequent at the bottom.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Describe and explain - HISTOGRAM

A

HISTOGRAM

= graphical display of a distribution.

It presents the SAME information as — a frequency table

BUT

is quicker and easier to grasp.

When the variable is quantitative = no gap between the bars.

When the variable is categorical, however, there is usually a SMALL gap between them.

SHAPE = Unimodal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Describe and explain - Distribution shapes

A

Distribution Shapes

When the distribution of a quantitative variable is displayed in a histogram — it has a shape.

The shape of the distribution of self-esteem scores in is typical.

There is a peak somewhere near the middle of the distribution and “tails” that taper in either direction from the peak.

IMAGE BELOW…
SHAPE = bimodal
meaning they have two distinct peaks

Distributions can also have more than two distinct peaks, = relatively rare in psychological research.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Symmetrical or skewed?
Describe the shape of positive, negative skew and symmetrical…

A

Symmetrical or skewed?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Describe outliers

A

An OUTLIER is an extreme score that is much higher or lower than the rest of the scores in the distribution.

Sometimes outliers represent truly extreme scores on the variable of interest.

EXAMPLE

On the Beck Depression Inventory
= a single clinically depressed person might be an outlier in a sample of otherwise happy and high-functioning peers.

However, outliers can also represent errors or misunderstandings on the part of the researcher or participant, equipment malfunctions, or similar problems.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Describe and explain - Central Tendency

A

Central Tendency

The central tendency of a distribution is its middle
the point around which the scores in the distribution tend to cluster.

(Another term for central tendency is average.)

Three most common measures of central tendency:
the mean, the median, and the mode.

The mean of a distribution (symbolized M)
= is the sum of the scores divided /
by the number of scores

M=ΣX/N

Σ (the Greek letter sigma) = is the summation sign
X = means to sum across the values of the variable
N = represents the number of scores.

The mean…
— provides a good indication of the central tendency of a distribution
— is easily understood by most people.
— has statistical properties FOR inferential statistics.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Describe median

A

MEDIAN = is the middle score

Find the median…

8 4 12 14 3 2 3

Rearrange low to high

2 3 3 4 8 12 14

Median = 4

EXAMPLE
If the distribution were…

2 3 3 4 8 12 14 15

Median = 6

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Describe mode and what we can learn from different sidtribution shapes

A

MODE = is the most frequent score in a distribution.

The mode is the ONLY measure of central tendency that can also be used for categorical variables

EXAMPLE -

Data set - 2 3 3 4 8 12 14

Mode = 3

When distribution = unimodal and symmetrical
the mean, median, and mode will be very close to each other at the peak of the distribution.

BIMODAL AND ASSYMETRICAL distribution

the mean, median, and mode can be quite different.

In a bimodal distribution
the mean and median will tend to be between the peaks,
WHILE the mode will be at the tallest peak.

In a skewed distribution

the mean will DIFFER from the median in the direction of the skew (i.e., the direction of the longer tail).

For highly skewed distributions, the mean can be pulled so far in the direction of the skew that it is no longer a good measure of the central tendency of that distribution.

HIGHLY SKEWED = Researchers prefer MEDIAN

EXAMPLE (for understanding…)

Imagine, for example, a set of four simple reaction times of 200, 250, 280, and 250 milliseconds (ms). The mean is 245 ms. But the addition of one more score of 5,000 ms—perhaps because the participant was not paying attention—would raise the mean to 1,445 ms. Not only is this measure of central tendency greater than 80% of the scores in the distribution, but it also does not seem to represent the behavior of anyone in the distribution very well. This is why researchers often prefer the median for highly skewed distributions (such as distributions of reaction times).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Desribe and explain - Variability

A

Measures of Variability

The variability of a distribution is the EXTENT to which the scores vary AROUND their central tendency.

REF IMAGE -

both of which have the SAME central tendency.
The mean, median, and mode of each distribution are 10.

Notice, however, that the two distributions differ in terms of their variability.

The top = LOW variability, with all the scores relatively close to the center.

The bottom one has relatively HIGH variability, with the scores are spread across a much greater range.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Describe range

A

RANGE = difference between the highest and lowest scores in the distribution.

Although the range is easy to compute and understand, it can be misleading when there are outliers.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Explain the standard deviation

A

By far the most common measure of variability is the standard deviation.

The standard deviation of a distribution is the average distance between the scores and the mean.

Computing the standard deviation involves a slight complication.

  1. Specifically, it involves finding the difference between each score and the mean
  2. Squaring each difference
  3. finding the mean of these squared differences
  4. finding the square root of that mean.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Look at table - mentally go through the process of calculating the standard deviation

A

The computations for the standard deviation are illustrated for a small set of data in Table 12.3.

—- although the differences can be negative, the squared differences are always positive—meaning that the standard deviation is always positive.

—- Although the variance is itself a measure of variability, it generally plays a larger role in inferential statistics than in descriptive statistics.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Why use N − 1 instead of N

A

N or N − 1

If you have already taken a statistics course, you may have learned to divide the sum of the squared differences by N − 1 rather than by N when you compute the variance and standard deviation. Why is this?

By definition, the standard deviation is the square root of the mean of the squared differences. This implies dividing the sum of squared differences by N, as in the formula just presented. Computing the standard deviation this way is appropriate when your goal is simply to describe the variability in a sample. And learning it this way emphasizes that the variance is in fact the mean of the squared differences—and the standard deviation is the square root of this mean.

However, most calculators and software packages divide the sum of squared differences by N − 1. This is because the standard deviation of a sample tends to be a bit lower than the standard deviation of the population the sample was selected from.

Dividing the sum of squares by N − 1 corrects for this tendency and results in a better estimate of the population standard deviation.

Because researchers generally think of their data as representing a sample selected from a larger population—and because they are generally interested in drawing conclusions about the population—it makes sense to routinely apply this correction.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Describe and explain - percentile rank

A

In many situations, it is useful to have a way to describe the location of an individual score within its distribution.

Percentile rank of a score = the percentage of scores in the distribution that are LOWER than that score.

EXAMPLE

Any score in the distribution, we can find its percentile rank by counting the number of scores in the distribution that are lower than that score and converting that number to a percentage of the total number of scores.

Notice, for example, that five of the students represented by the data in Table 12.1 had self-esteem scores of 23.

In this distribution, 32 of the 40 scores (80%) are lower than 23.

Thus each of these students has a percentile rank of 80. (It can also be said that they scored “at the 80th percentile.”)

Percentile ranks are often used to report the results of standardized tests of ability or achievement.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q
A

Another approach is the z score. The z score for a particular individual is the difference between that individual’s score and the mean of the distribution, divided by the standard deviation of the distribution:

z = (X−M)/SD

A z score indicates how far above or below the mean a raw score is, but it expresses this in terms of the standard deviation. For example, in a distribution of intelligence quotient (IQ) scores with a mean of 100 and a standard deviation of 15, an IQ score of 110 would have a z score of (110 − 100) / 15 = +0.67. In other words, a score of 110 is 0.67 standard deviations (approximately two thirds of a standard deviation) above the mean. Similarly, a raw score of 85 would have a z score of (85 − 100) / 15 = −1.00. In other words, a score of 85 is one standard deviation below the mean.

There are several reasons that z scores are important. Again, they provide a way of describing where an individual’s score is located within a distribution and are sometimes used to report the results of standardized tests. They also provide one way of defining outliers. For example, outliers are sometimes defined as scores that have z scores less than −3.00 or greater than +3.00. In other words, they are defined as scores that are more than three standard deviations from the mean. Finally, z scores play an important role in understanding and computing other statistics, as we will see shortly.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q
A

Online Descriptive Statistics
Although many researchers use commercially available software such as SPSS and Excel to analyze their data, there are several free online analysis tools that can also be extremely useful. Many allow you to enter or upload your data and then make one click to conduct several descriptive statistical analyses. Among them are the following.

Rice Virtual Lab in Statistics

http://onlinestatbook.com/stat_analysis/index.html

VassarStats

http://faculty.vassar.edu/lowry/VassarStats.html

Bright Stat

http://www.brightstat.com

For a more complete list, see http://statpages.org/index.html

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q
A

Differences between groups or conditions are usually described in terms of the mean and standard deviation of each group or condition. For example, Thomas Ollendick and his colleagues conducted a study in which they evaluated two one-session treatments for simple phobias in children (Ollendick et al., 2009)[1]. They randomly assigned children with an intense fear (e.g., to dogs) to one of three conditions. In the exposure condition, the children actually confronted the object of their fear under the guidance of a trained therapist. In the education condition, they learned about phobias and some strategies for coping with them. In the wait-list control condition, they were waiting to receive a treatment after the study was over. The severity of each child’s phobia was then rated on a 1-to-8 scale by a clinician who did not know which treatment the child had received. (This was one of several dependent variables.) The mean fear rating in the education condition was 4.83 with a standard deviation of 1.52, while the mean fear rating in the exposure condition was 3.47 with a standard deviation of 1.77. The mean fear rating in the control condition was 5.56 with a standard deviation of 1.21. In other words, both treatments worked, but the exposure treatment worked better than the education treatment. As we have seen, differences between group or condition means can be presented in a bar graph like that in Figure 12.5, where the heights of the bars represent the group or condition means. We will look more closely at creating American Psychological Association (APA)-style bar graphs shortly.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q
A

It is also important to be able to describe the strength of a statistical relationship, which is often referred to as the effect size. The most widely used measure of effect size for differences between group or condition means is called Cohen’s d, which is the difference between the two means divided by the standard deviation:

d = (M1 −M2)/SD

In this formula, it does not really matter which mean is M1 and which is M2. If there is a treatment group and a control group, the treatment group mean is usually M1 and the control group mean is M2. Otherwise, the larger mean is usually M1 and the smaller mean M2 so that Cohen’s d turns out to be positive. Indeed Cohen’s d values should always be positive so it is the absolute difference between the means that is considered in the numerator. The standard deviation in this formula is usually a kind of average of the two group standard deviations called the pooled-within groups standard deviation. To compute the pooled within-groups standard deviation, add the sum of the squared differences for Group 1 to the sum of squared differences for Group 2, divide this by the sum of the two sample sizes, and then take the square root of that. Informally, however, the standard deviation of either group can be used instead.

22
Q
A

Conceptually, Cohen’s d is the difference between the two means expressed in standard deviation units. (Notice its similarity to a z score, which expresses the difference between an individual score and a mean in standard deviation units.) A Cohen’s d of 0.50 means that the two group means differ by 0.50 standard deviations (half a standard deviation). A Cohen’s d of 1.20 means that they differ by 1.20 standard deviations. But how should we interpret these values in terms of the strength of the relationship or the size of the difference between the means? Table 12.4 presents some guidelines for interpreting Cohen’s d values in psychological research (Cohen, 1992)[2]. Values near 0.20 are considered small, values near 0.50 are considered medium, and values near 0.80 are considered large. Thus a Cohen’s d value of 0.50 represents a medium-sized difference between two means, and a Cohen’s d value of 1.20 represents a very large difference in the context of psychological research. In the research by Ollendick and his colleagues, there was a large difference (d = 0.82) between the exposure and education conditions.

23
Q
A

Cohen’s d is useful because it has the same meaning regardless of the variable being compared or the scale it was measured on. A Cohen’s d of 0.20 means that the two group means differ by 0.20 standard deviations whether we are talking about scores on the Rosenberg Self-Esteem scale, reaction time measured in milliseconds, number of siblings, or diastolic blood pressure measured in millimeters of mercury. Not only does this make it easier for researchers to communicate with each other about their results, it also makes it possible to combine and compare results across different studies using different measures.

24
Q
A

Be aware that the term effect size can be misleading because it suggests a causal relationship—that the difference between the two means is an “effect” of being in one group or condition as opposed to another. Imagine, for example, a study showing that a group of exercisers is happier on average than a group of nonexercisers, with an “effect size” of d = 0.35. If the study was an experiment—with participants randomly assigned to exercise and no-exercise conditions—then one could conclude that exercising caused a small to medium-sized increase in happiness. If the study was cross-sectional, however, then one could conclude only that the exercisers were happier than the nonexercisers by a small to medium-sized amount. In other words, simply calling the difference an “effect size” does not make the relationship a causal one.

25
Q
A

Sex Differences Expressed as Cohen’s d

Researcher Janet Shibley Hyde has looked at the results of numerous studies on psychological sex differences and expressed the results in terms of Cohen’s d (Hyde, 2007)[3]. Following are a few of the values she has found, averaging across several studies in each case. (Note that because she always treats the mean for men as M1 and the mean for women as M2, positive values indicate that men score higher and negative values indicate that women score higher.)

Hyde points out that although men and women differ by a large amount on some variables (e.g., attitudes toward casual sex), they differ by only a small amount on the vast majority. In many cases, Cohen’s d is less than 0.10, which she terms a “trivial” difference. (The difference in talkativeness discussed in Chapter 1 was also trivial: d = 0.06.) Although researchers and non-researchers alike often emphasize sex differences, Hyde has argued that it makes at least as much sense to think of men and women as fundamentally similar. She refers to this as the “gender similarities hypothesis.”

26
Q
A

Correlations Between Quantitative Variables
As we have seen throughout the book, many interesting statistical relationships take the form of correlations between quantitative variables. For example, researchers Kurt Carlson and Jacqueline Conard conducted a study on the relationship between the alphabetical position of the first letter of people’s last names (from A = 1 to Z = 26) and how quickly those people responded to consumer appeals (Carlson & Conard, 2011)[4]. In one study, they sent emails to a large group of MBA students, offering free basketball tickets from a limited supply. The result was that the further toward the end of the alphabet students’ last names were, the faster they tended to respond. These results are summarized in Figure 12.6.

27
Q
A

Such relationships are often presented using line graphs or scatterplots, which show how the level of one variable differs across the range of the other. In the line graph in Figure 12.6, for example, each point represents the mean response time for participants with last names in the first, second, third, and fourth quartiles (or quarters) of the name distribution. It clearly shows how response time tends to decline as people’s last names get closer to the end of the alphabet. The scatterplot in Figure 12.7, shows the relationship between 25 research methods students’ scores on the Rosenberg Self-Esteem Scale given on two occasions a week apart. Here the points represent individuals, and we can see that the higher students scored on the first occasion, the higher they tended to score on the second occasion. In general, line graphs are used when the variable on the x-axis has (or is organized into) a small number of distinct values, such as the four quartiles of the name distribution. Scatterplots are used when the variable on the x-axis has a large number of values, such as the different possible self-esteem scores.

28
Q
A

The data presented in Figure 12.7 provide a good example of a positive relationship, in which higher scores on one variable tend to be associated with higher scores on the other (so that the points go from the lower left to the upper right of the graph). The data presented in Figure 12.6 provide a good example of a negative relationship, in which higher scores on one variable tend to be associated with lower scores on the other (so that the points go from the upper left to the lower right).

Both of these examples are also linear relationships, in which the points are reasonably well fit by a single straight line. Nonlinear relationships are those in which the points are better fit by a curved line. Figure 12.8, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best fits the points is a curve—a kind of upside down “U”—because people who get about eight hours of sleep tend to be the least depressed, while those who get too little sleep and those who get too much sleep tend to be more depressed. Nonlinear relationships are not uncommon in psychology, but a detailed discussion of them is beyond the scope of this book.

29
Q
A

As we saw earlier in the book, the strength of a correlation between quantitative variables is typically measured using a statistic called Pearson’s r. As Figure 12.9 shows, its possible values range from −1.00, through zero, to +1.00. A value of 0 means there is no relationship between the two variables. In addition to his guidelines for interpreting Cohen’s d, Cohen offered guidelines for interpreting Pearson’s r in psychological research (see Table 12.4). Values near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s r is unrelated to its strength. Pearson’s r values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. Like Cohen’s d, Pearson’s r is also referred to as a measure of “effect size” even though the relationship may not be a causal one.

30
Q
A

The computations for Pearson’s r are more complicated than those for Cohen’s d. Although you may never have to do them by hand, it is still instructive to see how. Computationally, Pearson’s r is the “mean cross-product of z scores.” To compute it, one starts by transforming all the scores to z scores. For the X variable, subtract the mean of X from each score and divide each difference by the standard deviation of X. For the Y variable, subtract the mean of Y from each score and divide each difference by the standard deviation of Y. Then, for each individual, multiply the two z scores together to form a cross-product. Finally, take the mean of the cross-products. The formula looks like this:

31
Q
A

Table 12.5 illustrates these computations for a small set of data. The first column lists the scores for the X variable, which has a mean of 4.00 and a standard deviation of 1.90. The second column is the z-score for each of these raw scores. The third and fourth columns list the raw scores for the Y variable, which has a mean of 40 and a standard deviation of 11.78, and the corresponding z scores. The fifth column lists the cross-products. For example, the first one is 0.00 multiplied by −0.85, which is equal to 0.00. The second is 1.58 multiplied by 1.19, which is equal to 1.88. The mean of these cross-products, shown at the bottom of that column, is Pearson’s r, which in this case is +.53. There are other formulas for computing Pearson’s r by hand that may be quicker. This approach, however, is much clearer in terms of communicating conceptually what Pearson’s r is.

32
Q
A

As we saw earlier, there are two common situations in which the value of Pearson’s r can be misleading. One is when the relationship under study is nonlinear. Even though Figure 12.8 shows a fairly strong relationship between depression and sleep, Pearson’s r would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s r. The other is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as restriction of range. Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 12.10. Pearson’s r here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 12.11—then the relationship would seem to be quite weak. In fact, Pearson’s r for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s r in light of it. (There are also statistical methods to correct Pearson’s r for restriction of range, but they are beyond the scope of this book).

33
Q
A

Presenting Descriptive Statistics in Writing
Recall that APA style includes several rules for presenting numerical results in the text (see 4.31–4.34 in the APA Publication Manual) . These include using words only for numbers less than 10 that do not represent precise statistical results and using numerals for numbers 10 and higher. However, statistical results are always presented in the form of numerals rather than words and are usually rounded to two decimal places (e.g., “2.00” rather than “two” or “2”). They can be presented either in the narrative description of the results or parenthetically—much like reference citations. When you have a small number of results to report, it is often most efficient to write them out. Here are some examples:

The mean age of the participants was 22.43 years with a standard deviation of 2.34.

Among the participants with low self-esteem, those in a negative mood expressed stronger intentions to have unprotected sex (M = 4.05, SD = 2.32) than those in a positive mood (M = 2.15, SD = 2.27).

The treatment group had a mean of 23.40 (SD = 9.33), while the control group had a mean of 20.87 (SD = 8.45).

The test-retest correlation was .96.

There was a moderate negative correlation between the alphabetical position of respondents’ last names and their response time (r = −.27).

Notice that when presented in the narrative, the terms mean and standard deviation are written out, but when presented parenthetically, the symbols M and SD are used instead. Notice also that it is especially important to use parallel construction to express similar or comparable results in similar ways. The third example is much better than the following nonparallel alternative:

The treatment group had a mean of 23.40 (SD = 9.33), while 20.87 was the mean of the control group, which had a standard deviation of 8.45.

34
Q
A

Presenting Descriptive Statistics in Figures
When you have a large number of results to report, you can often do it more clearly and efficiently with a graphical depiction of the data, such as pie charts, bar graphs, or scatterplots. In an APA style research report, these graphs are presented as figures. When you prepare figures for an APA-style research report, there are some general guidelines that you should keep in mind. First, the figure should always add important information rather than repeat information that already appears in the text or in a table (if a figure presents information more clearly or efficiently, then you should keep the figure and eliminate the text or table.) Second, figures should be as simple as possible. For example, the Publication Manual discourages the use of color unless it is absolutely necessary (although color can still be an effective element in posters, slide show presentations, or textbooks.) Third, figures should be interpretable on their own. A reader should be able to understand the basic result based only on the figure and its caption and should not have to refer to the text for an explanation.

35
Q
A

There are also several more technical guidelines for presentation of figures that include the following (see the APA Publication Manual section 5.20 through 5.30):

Layout of graphs
- In general, scatterplots, bar graphs, and line graphs should be slightly wider than they are tall.
- The independent variable should be plotted on the x-axis and the dependent variable on the y-axis.
- Values should increase from left to right on the x-axis and from bottom to top on the y-axis.
- The x-axis and y-axis should begin with the value zero.

Axis Labels and Legends
- Axis labels should be clear and concise and include the units of measurement if they do not appear in the caption.
- Axis labels should be parallel to the axis.
- Legends should appear within the figure.
- Text should be in the same simple font throughout and no smaller than 8 point and no larger than 14 point.

Captions
- Captions are titled with the word “Figure”, followed by the figure number in the order in which it appears in the text, and terminated with a period. This title is italicized.
- After the title is a brief description of the figure terminated with a period (e.g., “Reaction times of the control versus experimental group.”)
- Following the description, include any information needed to interpret the figure, such as any abbreviations, units of measurement (if not in the axis label), units of error bars, etc.

36
Q
A

As we have seen throughout this book, bar graphs are generally used to present and compare the mean scores for two or more groups or conditions. The bar graph in Figure 12.11 is an APA-style version of Figure 12.4. Notice that it conforms to all the guidelines listed. A new element in Figure 12.11 is the smaller vertical bars that extend both upward and downward from the top of each main bar. These are error bars, and they represent the variability in each group or condition. Although they sometimes extend one standard deviation in each direction, they are more likely to extend one standard error in each direction (as in Figure 12.11). The standard error is the standard deviation of the group divided by the square root of the sample size of the group. The standard error is used because, in general, a difference between group means that is greater than two standard errors is statistically significant. Thus one can “see” whether a difference is statistically significant based on a bar graph with error bars.

37
Q
A

Line graphs are used when the independent variable is measured in a more continuous manner (e.g., time) or to present correlations between quantitative variables when the independent variable has, or is organized into, a relatively small number of distinct levels. Each point in a line graph represents the mean score on the dependent variable for participants at one level of the independent variable. Figure 12.12 is an APA-style version of the results of Carlson and Conard. Notice that it includes error bars representing the standard error and conforms to all the stated guidelines.

In most cases, the information in a line graph could just as easily be presented in a bar graph. In Figure 12.12, for example, one could replace each point with a bar that reaches up to the same level and leave the error bars right where they are. This emphasizes the fundamental similarity of the two types of statistical relationship. Both are differences in the average score on one variable across levels of another. The convention followed by most researchers, however, is to use a bar graph when the variable plotted on the x-axis is categorical and a line graph when it is quantitative.

38
Q
A

Scatterplots are used to present correlations and relationships between quantitative variables when the variable on the x-axis (typically the independent variable) has a large number of levels. Each point in a scatterplot represents an individual rather than the mean for a group of individuals, and there are no lines connecting the points. The graph in Figure 12.13 is an APA-style version of Figure 12.7, which illustrates a few additional points. First, when the variables on the x-axis and y-axis are conceptually similar and measured on the same scale—as here, where they are measures of the same variable on two different occasions—this can be emphasized by making the axes the same length. Second, when two or more individuals fall at exactly the same point on the graph, one way this can be indicated is by offsetting the points slightly along the x-axis. Other ways are by displaying the number of individuals in parentheses next to the point or by making the point larger or darker in proportion to the number of individuals. Finally, the straight line that best fits the points in the scatterplot, which is called the regression line, can also be included.

39
Q
A

Expressing Descriptive Statistics in Tables

Like graphs, tables can be used to present large amounts of information clearly and efficiently. The same general principles apply to tables as apply to graphs. They should add important information to the presentation of your results, be as simple as possible, and be interpretable on their own. Again, we focus here on tables for an APA-style manuscript.

The most common use of tables is to present several means and standard deviations—usually for complex research designs with multiple independent and dependent variables. Figure 12.14, for example, shows the results of a hypothetical study similar to the one by MacDonald and Martineau (2002)[1] (The means in Figure 12.14 are the means reported by MacDonald and Martineau, but the standard errors are not). Recall that these researchers categorized participants as having low or high self-esteem, put them into a negative or positive mood, and measured their intentions to have unprotected sex. They also measured participants’ attitudes toward unprotected sex. Notice that the table includes horizontal lines spanning the entire table at the top and bottom, and just beneath the column headings. Furthermore, every column has a heading—including the leftmost column—and there are additional headings that span two or more columns that help to organize the information and present it more efficiently. Finally, notice that APA-style tables are numbered consecutively starting at 1 (Table 1, Table 2, and so on) and given a brief but clear and descriptive title.

40
Q
A

Another common use of tables is to present correlations—usually measured by Pearson’s r—among several variables. This kind of table is called a correlation matrix. Figure 12.15 is a correlation matrix based on a study by David McCabe and colleagues (McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010)[2]. They were interested in the relationships between working memory and several other variables. We can see from the table that the correlation between working memory and executive function, for example, was an extremely strong .96, that the correlation between working memory and vocabulary was a medium .27, and that all the measures except vocabulary tend to decline with age. Notice here that only half the table is filled in because the other half would have identical values. For example, the Pearson’s r value in the upper right corner (working memory and age) would be the same as the one in the lower left corner (age and working memory). The correlation of a variable with itself is always 1.00, so these values are replaced by dashes to make the table easier to read.

As with graphs, precise statistical results that appear in a table do not need to be repeated in the text. Instead, the writer can note major trends and alert the reader to details (e.g., specific correlations) that are of particular interest.

41
Q
A

Even when you understand the statistics involved, analyzing data can be a complicated process. It is likely that for each of several participants, there are data for several different variables: demographics such as sex and age, one or more independent variables, one or more dependent variables, and perhaps a manipulation check. Furthermore, the “raw” (unanalyzed) data might take several different forms—completed paper-and-pencil questionnaires, computer files filled with numbers or text, videos, or written notes—and these may have to be organized, coded, or combined in some way. There might even be missing, incorrect, or just “suspicious” responses that must be dealt with. In this section, we consider some practical advice to make this process as organized and efficient as possible.

42
Q
A

Prepare Your Data for Analysis
Whether your raw data are on paper or in a computer file (or both), there are a few things you should do before you begin analyzing them. First, be sure they do not include any information that might identify individual participants and be sure that you have a secure location where you can store the data and a separate secure location where you can store any consent forms. Unless the data are highly sensitive, a locked room or password-protected computer is usually good enough. It is also a good idea to make photocopies or backup files of your data and store them in yet another secure location—at least until the project is complete. Professional researchers usually keep a copy of their raw data and consent forms for several years in case questions about the procedure, the data, or participant consent arise after the project is completed.

43
Q
A

Next, you should check your raw data to make sure that they are complete and appear to have been accurately recorded (whether it was participants, yourself, or a computer program that did the recording). At this point, you might find that there are illegible or missing responses, or obvious misunderstandings (e.g., a response of “12” on a 1-to-10 rating scale). You will have to decide whether such problems are severe enough to make a participant’s data unusable. If information about the main independent or dependent variable is missing, or if several responses are missing or suspicious, you may have to exclude that participant’s data from the analyses. If you do decide to exclude any data, do not throw them away or delete them because you or another researcher might want to see them later. Instead, set them aside and keep notes about why you decided to exclude them because you will need to report this information.

44
Q
A

Now you are ready to enter your data in a spreadsheet program or, if it is already in a computer file, to format it for analysis. You can use a general spreadsheet program like Microsoft Excel or a statistical analysis program like SPSS to create your data file. (Data files created in one program can usually be converted to work with other programs.) The most common format is for each row to represent a participant and for each column to represent a variable (with the variable name at the top of each column). A sample data file is shown in Table 12.6. The first column contains participant identification numbers. This is followed by columns containing demographic information (sex and age), independent variables (mood, four self-esteem items, and the total of the four self-esteem items), and finally dependent variables (intentions and attitudes). Categorical variables can usually be entered as category labels (e.g., “M” and “F” for male and female) or as numbers (e.g., “0” for negative mood and “1” for positive mood). Although category labels are often clearer, some analyses might require numbers. SPSS allows you to enter numbers but also attach a category label to each number.

If you have multiple-response measures—such as the self-esteem measure in Table 12.6—you could combine the items by hand and then enter the total score in your spreadsheet. However, it is much better to enter each response as a separate variable in the spreadsheet—as with the self-esteem measure in Table 12.6—and use the software to combine them (e.g., using the “AVERAGE” function in Excel or the “Compute” function in SPSS). Not only is this approach more accurate, but it allows you to detect and correct errors, to assess internal consistency, and to analyze individual responses if you decide to do so later.

45
Q
A

Preliminary Analyses
Before turning to your primary research questions, there are often several preliminary analyses to conduct. For multiple-response measures, you should assess the internal consistency of the measure. Statistical programs like SPSS will allow you to compute Cronbach’s α or Cohen’s κ. If this is beyond your comfort level, you can still compute and evaluate a split-half correlation.

Next, you should analyze each important variable separately. (This step is not necessary for manipulated independent variables, of course, because you as the researcher determined what the distribution would be.) Make histograms for each one, note their shapes, and compute the common measures of central tendency and variability. Be sure you understand what these statistics mean in terms of the variables you are interested in. For example, a distribution of self-report happiness ratings on a 1-to-10-point scale might be unimodal and negatively skewed with a mean of 8.25 and a standard deviation of 1.14. But what this means is that most participants rated themselves fairly high on the happiness scale, with a small number rating themselves noticeably lower.

46
Q
A

Now is the time to identify outliers, examine them more closely, and decide what to do about them. You might discover that what at first appears to be an outlier is the result of a response being entered incorrectly in the data file, in which case you only need to correct the data file and move on. Alternatively, you might suspect that an outlier represents some other kind of error, misunderstanding, or lack of effort by a participant. For example, in a reaction time distribution in which most participants took only a few seconds to respond, a participant who took 3 minutes to respond would be an outlier. It seems likely that this participant did not understand the task (or at least was not paying very close attention). Also, including their reaction time would have a large impact on the mean and standard deviation for the sample. In situations like this, it can be justifiable to exclude the outlying response or participant from the analyses. If you do this, however, you should keep notes on which responses or participants you have excluded and why, and apply those same criteria consistently to every response and every participant. When you present your results, you should indicate how many responses or participants you excluded and the specific criteria that you used. And again, do not literally throw away or delete the data that you choose to exclude. Just set them aside because you or another researcher might want to see them later.

47
Q
A

Keep in mind that outliers do not necessarily represent an error, misunderstanding, or lack of effort. They might represent truly extreme responses or participants. For example, in one large university student sample, the vast majority of participants reported having had fewer than 15 sexual partners, but there were also a few extreme scores of 60 or 70 (Brown & Sinclair, 1999)[1]. Although these scores might represent errors, misunderstandings, or even intentional exaggerations, it is also plausible that they represent honest and even accurate estimates. One strategy here would be to use the median and other statistics that are not strongly affected by the outliers. Another would be to analyze the data both including and excluding any outliers. If the results are essentially the same, which they often are, then it makes sense to leave the outliers. If the results differ depending on whether the outliers are included or excluded them, then both analyses can be reported and the differences between them discussed.

48
Q
A

Planned and Exploratory Analyses
Finally, you are ready to answer your primary research questions. When you designed your study, you might have had a hypothesis that a particular relationship might exist in the data. In this case, you would conduct a planned analysis, to test a relationship that you expected in your hypothesis. For example, if you expected a difference between group or condition means, you can compute the relevant group or condition means and standard deviations, make a bar graph to display the results, and compute Cohen’s d. If you expected a correlation between quantitative variables, you can make a line graph or scatterplot (be sure to check for nonlinearity and restriction of range) and compute Pearson’s r.

49
Q
A

Once you have conducted your planned analyses, you can move on to examine the possibility there might be relationships in the data that you did not hypothesize. This would be an exploratory analysis, an analysis that you are undertaking without an existing hypothesis. These analyses will help you explore your data for other interesting results that might provide the basis for future research (and material for the discussion section of your paper). Daryl Bem (2003) suggests that you

[e]xamine [your data] from every angle. Analyze the sexes separately. Make up new composite indexes. If a datum suggests a new hypothesis, try to find additional evidence for it elsewhere in the data. If you see dim traces of interesting patterns, try to reorganize the data to bring them into bolder relief. If there are participants you don’t like, or trials, observers, or interviewers who gave you anomalous results, drop them (temporarily). Go on a fishing expedition for something—anything—interesting. (p. 186–187)[2]

50
Q
A

It is important to differentiate planned from exploratory analyses in writing your results and discussion sections of your report. This is because complex sets of data are likely to include “patterns” that occurred entirely by chance, and every time you do another unplanned analysis on these data, you increase the likelihood these chance patterns will appear to be real patterns, what is referred to as a “Type 1” error (see the chapter on Inferential Statistics). Thus results discovered while doing exploratory analyses (what Bem calls a “fishing expedition”) should be viewed skeptically and replicated in at least one new study before being presented. But, if you do find interesting relationships you did not expect in the data, explain that they might be worthy of additional research.

51
Q
A

Understand Your Descriptive Statistics
In the next chapter, we will consider inferential statistics—a set of techniques for deciding whether the results for your sample are likely to apply to the population. Although inferential statistics are important for reasons that will be explained shortly, beginning researchers sometimes forget that their descriptive statistics really tell “what happened” in their study. For example, imagine that a treatment group of 50 participants has a mean score of 34.32 (SD = 10.45), a control group of 50 participants has a mean score of 21.45 (SD = 9.22), and Cohen’s d is an extremely strong 1.31. Although conducting and reporting inferential statistics (like a t test) would certainly be a required part of any formal report on this study, it should be clear from the descriptive statistics alone that the treatment worked. Or imagine that a scatterplot shows an indistinct “cloud” of points and Pearson’s r is a trivial −.02. Again, although conducting and reporting inferential statistics would be a required part of any formal report on this study, it should be clear from the descriptive statistics alone that the variables are essentially unrelated. The point is that you should always be sure that you thoroughly understand your results at a descriptive level first, and then move on to the inferential statistics.