6.4-6.8 Flashcards
(26 cards)
the derivative of an integral is
the original funcyion
integrals always go from
low to high
when asked for absolute extrema include
endpoints
finding extrema with integrals
use integral to find og function (integral of f’(x)=f(x)) and test points
a,b int(k*f(x)dx)=
k* a,b int(f(x)dx)
a, b int(f(x)+/-g(x)dx)=
a, b int(f(x)dx) +/- a, b int(g(x)dx)
if int from a to a =
0
int b,a =
-int a,b
any indefinite int must inc
+c
int(0dx)
c
int(kdx)
kx+c
int(x^ndx)
x^(n+1)/(n+1)+c
int(cosxdx)
sinx+c
int(sinxdx)
-cosx+c
int(csc^2xdx)
-cotx+c
int(sec^2xdx)
tanx+c
int(cscxcotxdx)
-cscx+c
int(secxtanxdx)
secx+c
antiderivative=
integral
integral of f”(x)=
f’(x)
int(e^xdx)
e^x+c
int(a^xdx)
a^x/lna +c
int(1/x)
ln|x|+c
inc ___ when evaluating integrals
|w/ numbers