analisi 1, 2, algebra e geometria Flashcards

(43 cards)

1
Q

log_a (a^x)

A

= x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

log_a (xy)

A

= log_a(x) + log_a(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

log_a (x/y)

A

= log_a(x) - log_a(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

log_a (x^b)

A

= b * log_a (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

log_b (x) (portarlo in base a)

A

= log_a (x) / log_a (b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sommatoria da k=1 a n (k)

A

n*(n+1)
————–
2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

sommatoria da k=0 a n (q^k)

A

1-q^(n+1)
————
(1-q)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

sin (-x)

A
  • sin (x)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

cos (-x)

A

cos(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

tan(-x)

A

-tan(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

cot(-x)

A

-cot(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

sin (a+b)

A

sin(a)cos(b) + cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sin (a-b)

A

sin(a)cos(b) - cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

cos (a+b)

A

cos(a)cos(b) - sin(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

tan (a+b)

A

1 - tan(a)tan(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

tan (a-b)

A

1 + tan(a)tan(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

sin (2a)

A

2*sin(a)cos(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

cos (2a)

A

cos^2(a) - sin^2(a)

19
Q

tan (2a)

20
Q

sin (a/2)

A

+ o - sqrt ( 1 - cos(a) ) / 2

21
Q

cos (a/2)

A

+ o - sqrt [ 1 + cos(a) ] / 2

22
Q

tan (a/2)

A

+ o - sqrt { [ 1 - cos(a) ] / [ 1 + cos(a) ] }

23
Q

sin h (x)

24
Q

cos h (x)

25
disequazione irrazionale: | sqrt(a) > b
sistema 1:------------------ sistema 2: a >= 0 ----------------------- a >= 0 b >= 0 ----------------------- b < 0 a > b^2
26
z = x + iy | scrivere coniugato e modulo
coniugato: z' = x - iy modulo: | z | = sqrt ( x^2 + y^2 )
27
z = x + iy | scrivere forma trigonometrica
z' = p ( cos(a) + i*sen(a) ) p = sqrt ( x^2 + y^2) cos(a) = x / sqrt ( x^2 + y^2 ) sin (a) = y / sqrt (x^2 + y^2)
28
z = x + iy | scrivere forma esponenziale
z' = p*e^(ia) p = sqrt ( x^2 + y^2) cos(a) = x / sqrt ( x^2 + y^2 ) sin (a) = y / sqrt (x^2 + y^2)
29
lim x-----> inf [ 1 + 1/x ] ^(x)
e
30
lim x------>inf [ x^(1/x) ]
1
31
lim x-------> 0 [ 1 + x ]^(1/x)
e
32
derivata di x^a
a* x^( a- 1 )
33
derivata di sqrt(x)
1 ----------- 2*sqrt(x)
34
derivata di a^(x)
a^(x)*ln(a)
35
derivata di tan(x)
1 ------------- cos^2(x)
36
TEOREMA DI ROLLE
se una funzione [a,b]--->R è continua in [a,b] e derivabile in ]a,b[, e: f(a) = f(b) allora: esiste c tale che f'(c) = 0
37
TEOREMA DI CAUCHY
``` siano f,g definite da [a,b] ---> R, continue in [a,b] e derivabili in ]a,b[ tali che g(a) diverso da g(b) e non esiste una x tale che g'(x) = f'(x) = 0 allora: esiste c tale che: f(b) - f(a) ......... f'(c) --------------- = ------- g(b) - g(a) ....... g'(c) ```
38
TEOREMA DI LAGRANGE
sia f: [a,b]---->R continua in [a,b] e derivabile in ]a,b[ allora: esiste un c appertenente a ]a,b[ tale che: ............... f(b) - f(a) f'(c) = ---------------- ................. b - a
39
TEOREMA DI DE L'HOPITAL
siano f,g derivabili sia x' punto di accumulazione tale che lim x--->x' f(x) = 0 e lim --->x' g(x) = 0 (oppure entrambi infinito) allora, se esiste, il limite: lim x--->x' [ f(x) / g(x) ] = lim x--->x' [ f'(x) / g'(x) ]
40
TEOREMA DI FERMAT
se esiste un massimo o un minimo relativo in una funzione, allora f'(c) = 0 con c punto di max o di min relativo
41
∫ x^α dx
x^(α+1) ---------- + c α+1
42
∫ a^x dx
a^x ------- + c ln a
43
METODO DI INTEGRAZIONE PER PARTI:
∫ f ′(x) ⋅ g(x) dx = f(x) ⋅ g(x) − ∫ f(x) ⋅ g′(x) dx