Applied anatomy and physiology 1.3b Linear motion, angular motion, fluid mechanics and projectile motion. Flashcards
(47 cards)
Describe Linear motion.
Movement of a body in a straight or curved line where all parts move the same distance in the same direction at the same time. Is resultant from a Direct force. Skeleton bobs are a good example in a sport.
Describe a Direct force.
A force applied through the centre of mass resulting in linear motion.
Define distance, how its calculated and it’s unit of measurement.
Total length of the path covered by a body.
is calculated by measuring the distance.
Measured in Metres M.
Define Displacement, how its calculated and it’s unit of measurement.
The shortest straight line route from start to finish.
Calculated by measuring point to point.
Measured in Metres M.
Define a Distance time graph.
A visual representation of the distance travelled plotted against the time taken.
Distance is on Y.
Time is on X.
Gradient of the curve indicates the speed.
Define a Gradient.
The slope of a graph at a particular moment in time.
Gradient= Change in Y/ Change in X
Define a Speed time graph.
A visual representation of the speed of motion plotted against the time taken.
Gradient of the curve indicates acceleration/ deceleration.
Define a Velocity time graph.
A visual representation of the velocity of motion plotted against time.
Gradient of the curve indicates acceleration/ deceleration.
A negative curve below the X axis represents a change in the body’s direction.
Describe the difference between speed and velocity
Speed is a measurement of distance whereas velocity is a measurement of displacement.
Define Angular motion.
Movement of a body or part of a body in a circular path about an axis of rotation.
Resultant of an Eccentric force.
Define an Eccentric force.
A force applied outside the centre of mass resulting in angular motion.
Define Torque.
A measurement of the turning (Rotational or Eccentric) Force applied to a body.
Name the three Axis of rotaton.
Longitudinal.
Transverse.
Frontal.
Describe the Longitudinal axis.
Runs from top to bottom of the body.
e.g. Ballerina performing pirouette.
Describe the Transverse axis.
Runs from side to side of the body.
e.g. a front somersault.
Describe the Frontal axis.
Runs from the front to the back of the body.
e.g. A gymnast performing a cartwheel.
Describe the Moment of Inertia (MI)
The resistance of a body to a change in it’s state of angular motion or rotation.
Define Angular velocity.
The rate of change in angular displacement or rate of rotation.
Define Angular momentum.
The quantity of angular motion possessed by a body.
State the calculation for Motion of Inertia.
Moment of Inertia= Sum ( Mass * Distribution of mass from the axis of rotation^2.
MI= Σ M*r^2
State the calculation for Angular velocity.
Angular velocity= Angular displacement/ seconds.
x radians/ seconds.
1 radian= 57.3° 2π*radian= 360°.
State the calculation for Angular momentum.
Angular momentum= Moment of Inertia * Radians per second.
AM= MI*RPS.
Name the two factors that effect Moment of Inertia.
Mass:
The greater the mass the greater the MI. So sports with a high degree of rotation are performed by athletes with low mass.
Distribution of mass from the axis:
When mass is tucked in around the axis the lower the MI.
Body will face less resistant if tucked compared to straight out.
Describe Moment of Inertias effect on Angular velocity.
If MI is high, resistant to rotation is high, so Angular velocity is low so the rate of spin is low.
By lowering MI by tucking in mass Angular velocity will speed up causing a greater rate of spin.