Bases Flashcards

(51 cards)

1
Q

( a + b )*2

A

a2 + 2ab + b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

a2 + 2ab + b2

A

( a + b )*2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

( a - b )*2

A

a2 - 2ab + b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

a2 - 2ab + b2

A

( a - b )*2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

(a + b) (a - b)

A

a2 - b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

a2 - b2

A

(a + b) (a -b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

a2 - b2

A

(a + b) (a -b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

sin²(x) + cos²(x)

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

sin(a - b)

A

sin(a)cos(b) - cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

cos(a - b)

A

cos(a)cos(b) + sin(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

tan(a + b)

A

(tan(a) + tan(b)) / (1 - tan(a)tan(b))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

tan(a - b)

A

(tan(a) - tan(b)) / (1 + tan(a)tan(b))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sin(2a)

A

2 sin(a) cos(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

cos(2a)

A

cos²(a) - sin²(a) = 2cos²(a) - 1 = 1 - 2sin²(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

tan(2a)

A

(2 tan(a)) / (1 - tan²(a))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

sin²(a)

A

(1 - cos(2a)) / 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

cos²(a)

A

(1 + cos(2a)) / 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

sin(a)cos(b)

A

1/2 [sin(a + b) + sin(a - b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

cos(a)cos(b)

A

1/2 [cos(a + b) + cos(a - b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

sin(a)sin(b)

A

1/2 [cos(a - b) - cos(a + b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

cos(a) + cos(b)

A

2 cos((a + b)/2) cos((a - b)/2)

22
Q

cos(a) - cos(b)

A

-2 sin((a + b)/2) sin((a - b)/2)

23
Q

sin(a) + sin(b)

A

2 sin((a + b)/2) cos((a - b)/2)

24
Q

sin(a) - sin(b)

A

2 cos((a + b)/2) sin((a - b)/2)

25
sin(a)cos(b)
1/2 [sin(a + b) + sin(a - b)]
26
cos(a)cos(b)
1/2 [cos(a + b) + cos(a - b)]
27
sin(a)sin(b)
1/2 [cos(a - b) - cos(a + b)]
28
(sin x)'
cos x
29
∫ sin x dx
-cos x + C
30
(cos x)'
-sin x
31
∫ cos x dx
sin x + C
32
(tan x)'
1 / cos² x
33
∫ tan x dx
ln|cos x| + C
34
cosh(x)
(e^x + e^(-x)) / 2
35
(cosh x)'
sinh x
36
∫ cosh x dx
sinh x + C
37
sinh(x)
(e^x - e^(-x)) / 2
38
(sinh x)'
cosh x
39
∫ sinh x dx
cosh x + C
40
tanh(x)
sinh(x) / cosh(x)
41
(tanh x)'
1 - tanh² x
42
Qu'est-ce qu'une fonction paire ?
Une fonction f est paire si ∀x ∈ Df, f(-x) = f(x)
43
Quelle est la symétrie d'une fonction paire ?
Elle est symétrique par rapport à l'axe des ordonnées.
44
Qu'est-ce qu'une fonction impaire ?
Une fonction f est impaire si ∀x ∈ Df, f(-x) = -f(x).
45
Quelle est la symétrie d'une fonction impaire ?
Elle est symétrique par rapport à l'origine du repère.
46
(e^x)'
e^x
47
(ln x)'
1/x
48
(x^n)'
n * x^(n-1)
49
(1/x)'
-1/x²
50
Énonce le théorème de bijection.
Soit f une fonction continue et strictement monotone sur un intervalle I. Alors, f réalise une bijection de I sur son image J, et sa réciproque f⁻¹ est continue sur J.
51