BMS334 Epigenetics Flashcards
(487 cards)
What are epigenetic mechanisms?
- Create molecular environment that shape accessibility of genes to transcription machinery
- Regulate levels of gene transcription and sensitivity to change by extrinsic DNA binding transcription factors
- Epigenetics do not change the underlying DNA sequence
What do epigenetic mechanisms regulate?
Epigenetic mechanisms regulate growth, development, and maintenance of physiological homeostasis across the life course
- Development and tissue homeostasis
- Adaptive and maladaptive responses to environmental factors
What molecules are involved in epigenetic mechanisms?
- DNA methylation of CpG dinucleotides
- Covalent Modifications of nucleosomal histones within chromatin
- Non-histone proteins that generate, recognise or remove DNA methylation, histone modifications
- Non-coding regulatory RNAs
Give an example of the epigenetic mechanism that directly acts on promotors or enhancers
- Steroid hormones e.g, ecdysone (potent regulators of gene transcription) bind to its TF receptor (ecdysone receptor) which undergoes a conformational change that allows entry to nucleus. It can then bind to recognised DNA and recruit proteins which stabilise the interaction between the RNA polymerase and the promotor regions of the ecdyson receptor
How does metylation of CpG dinucleotides result in gene regulation?
- Methyl group added to cytosine bases using DNA methyltransferases.
- Changes the interior surface of the major groove of DNA which changes the ability for TF’s to recognise the DNA surface
- It produces recruitment sites for DNA binding proteins to mask the major groove stopping direct contact to DNA. This blocks the ability of DNA to be recognised, read and decoded
How does the DNA sequence of promotor regions allow the regulation of gene expression?
Promotor sequences in genes are rich in these nucleotides. Whether a gene is active is often determined by the methylation state of these CpG nucleotides
How can the methylation of core histones regulate gene transcription?
In transcriptionally silent chromosomes, there are histones that are highly methylated. The combination of methylated histones and methylated cytosine residues shuts the locus down
How can the acetylation of core histones regulate gene transcription?
Transcriptionally active chromatin has a much more open structure (nucleosome free regions of DNA) and the nucleosomes are instead hyper acetylated. These negatively charged acetyl groups help the DNA to remain accessible to TFs by maintaining the chromatin in an uncondensed state
What part of the core histones are modified?
The N terminal tails of core histones are targets of a wide range of different histone modifications by enzymes that function as modification “writers”.
What is the role of histone Acetyltransferases?
Histone Acetyltransferases add acetyl groups to multiple lysines in the N-terminal tails of core histones
What is the role of Histone Methyltransferases?
Histone Methyltransferases add methyl groups to specific lysines or arginines in the N-terminal tails of core histones
What is the role of Histone kinases?
Histone kinases add phosphoryl groups to Serines / Threonines of core histones
How are histone modifications recognised?
Recognised by proteins with modification-specific binding domains – modification “readers”
What are acetylated histones recognised by?
Proteins with bromodomains
What are methylated histones recognised by?
Proteins with chromodomains
What are modification erasers?
If there are no proteins bound then these modifications can then be selectively removed
- For acetylation, the protein to remove it is histone deacetylases and for methylation, the enzyme is histone demethylases
How can long non coding RNAs regulate gene expression?
- Can be several KB in length and full of complex tertiary structures e.g. hair pin loops. These loops can interact with chromatin regulatory proteins.
- These RNA protein complexes can impact on the structure and function of the chromatin of which they are apart
Give an example of a long non coding RNA that regulates gene expression
For example, the X chromosome inactivation RNA called Xist. Has complicated hair pinned loops which allow interaction with proteins which allow selective shutting down of one of the two X chromosome’s in female cells
Give examples of short non coding RNAs
MicroRNA
PiRNA
How can Micro RNAs regulate gene expression?
Micro RNAs are present in the cytoplasm and interfere with the transaction of existing mRNA that is complementary to the micro RNA
- Can also lead to the destruction of the mRNA once hybridisation occurs
Where are piRNA found?
Nucleus
What is the role of piRNAs?
piRNAs have complementarity with nascent mRNAs. These RNAs encode transposable elements which controls the expression of transposable elements in the genome.
How do piRNAs control gene expression of transposable elements?
- They suppress the expression of transposable elements RNA through by recruitment of PIWI proteins to transposon loci and promote formation of transcriptionally silent heterochromatin
- They also act as nucleation signals for chromosome modification enzymes which shut the transposable mechanism down
- piRNA that are exported from the nucleus can also act in the cytoplasm to promote inhibition or degradation of transposable mRNA
What is meant by epigenetics ensuring a robust phenotype?
Epigenetic mechanisms guide development and ensure robust, stable phenotypes are produced through reliable mechanisms that regulate expression of the genome according to a predictable schedule.