C3 Flashcards
(34 cards)
cot∆
cos∆/sin∆ as well as 1/tan∆
Where does cot∆ cross between 0 and π
π/2
sec(^2)∆
tan(^2)∆+1
cosec(^2)∆
cot(^2)∆+1
sin(A+B)
sinAcosB+cosAsinB
sin(A—B)
sinAcosB-cosAsinB
cos(A+B)
cosAcosB-sinAsinB
cos(A—B)
cosAcosB+sinAsinB
tan(A+B)
(tanA+tanB) / (1—tanAtanB)
tan(A—B)
(tanA-tanB) / (1+tanAtanB)
sin2A
2sinAcosA
cos2A
cos(^2)A—sin(^2)A or 2cos(^2)A—1 or
1-2sin(^2)A
tan2A
(2tanA)/(1—tan(^2)A
asin∆±bcos∆
Rsin(∆±Ω) where R>0 and 0<90 where RcosΩ=a, RsinΩ=b and R=√(a(^2)+b(^2))
acos∆±bsin∆
Rcos(∆±Ω) where R>0 and 0<90 where RcosΩ=a, RsinΩ=b and R=√(a(^2)+b(^2))
2sinAcosB
sin(A+B)+sin(A—B)
2cosAcosB
cos(A+B)+cos(A—B)
2cosAsinB
sin(A+B)—sin(A—B)
2sinAsinB
—[cos(A+B)—cos(A—B)]
sinP+sinQ
2sin((P+Q)/2)cos((P—Q)/2)
cosP+cosQ
2cos((P+Q)/2)cos((P—Q)/2)
sinP—sinQ
2cos((P+Q)/2)sin((P—Q)/2)
cosP—cosQ
—2sin((P+Q)/2)sin((P—Q)/2)