calc exam 2 Flashcards
(16 cards)
d/dx arcsinx
1/ sqrt(1-x^2)
d/dx arctan
1/(1+x^2)
d/dx arcsec
1 / |x|*sqrt(x^2 - 1)
d/dx arccos
-1 / (1-x^2)
d/dx arccotx
-1 / (1+x^2)
d/dxarccscx
-1 / |x| sqrt(x^2-1)
Rolles theorem
if:
1. fcn is diff’ble on (a,b)
2. fcn is continuous on (a,b)
3. f(a) = f(b)
then exists some c where f’(c) = 0
mean value theorem
if
1. fcn diff’ble on (a,b)
2. fcn continuous on (a’b)
then exists some c where
f’(c) = (f(b) - f(a)) / ( b - a)
or
f’(c)(b-a) = f(b) - f(a)
compound interest formula
A(sub 0) * (1 + r/n)^(nt)
ln(f(x))
f’(x) / f(x)
linearization formula
L(x) = f(a) + f’(a)(x-a)
ln(1)
0
e^0
1
lnx graph
y = 0 vertical asymptote
kind of u-shaped concave down
e^x graph
y = 0 horizontal asymptote
kinda right angle u shaped
list of indeterminate forms
0/0
infinity/infinity
0^(0)
0*infinity
1^(infinity)
infinity^(0)
infinity - infinity