Derivatives of Functions Flashcards
(27 cards)
f(x) = ln(x) f'(x) = ?
https://youtu.be/3LgfZ4bQ-yc
1
─
x
f(x) = e^x f'(x) = ?
https://youtu.be/SFWN-TkVFyI
e^x
f(x) = sin(x) f'(x) = ?
cos(x)
f(x) = cos(x) f'(x) = ?
-sin(x)
Product Rule
g(x) = f(x) h(x)
g’(x) = ?
https://youtu.be/L5ErlC0COxI
f’(x) * h(x) + f(x) * h’(x)
Quotient Rule
f(x) =
g(x)
───
h(x)
f’(x) = ?
g’(x)h(x) - g(x)h’(x)
──────────
(h(x))^2
f(x) =
sin(x)
───
x
limit of f(x) = ?
https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/modal/v/sinx-over-x-as-x-approaches-0
1
d/dx tan(x) = ?
https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/modal/v/derivatives-of-tanx-and-cotx
1
────
cos^2(x)
or
sec^2(x)
d/dx cot(x) = ?
https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/modal/v/derivatives-of-tanx-and-cotx
-1
─────
sin^2(x)
or
-csc^2(x)
d/dx sec(x) = ?
https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/modal/v/derivatives-of-secx-and-cscx
sin(x) / cos^2(x) or tan(x) / cos(x) or tan(x) sec(x)
d/dx csc(x) = ?
https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/modal/v/derivatives-of-secx-and-cscx
-cos(x) / sin^2(x)
or
-(cot(x) csc(x))
Sine Sum Identity
sin(a + b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
sin(a) cos(b) + sin(b) cos(a)
Sine Difference Identity
sin(a - b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
sin(a) cos(b) - sin(b) cos(a)
Cosine Sum Identity
cos(a + b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
cos(a) cos(b) - sin(a) sin(b)
Cosine Difference Identity
cos(a - b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
cos(a) cos(b) + sin(a) sin(b)
Tan Sum Identity
tan(a + b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
tan(a) + tan(b)
─────────
1 - tan(a) tan(b)
Tan Difference Identity
tan(a - b) = ?
https://www.youtube.com/watch?v=zcEMKv5yIYs
tan(a) - tan(b)
─────────
1 + tan(a) tan(b)
Chain Rule
g(x) = f( h(x) )
g’(x) = ?
f’( h(x) ) * h’(x)
d/dx
a^x = ?
ln a (a^x)
d/dx
log_a (x) = ?
1
────
ln(a) x
d/dx of inverse functions
Let h(x) be the inverse of f(x)
h’(x) = ?
1
————
f’(h(x))
d/dx arcsin(x)
1
——————-
Sqrt (1 - x^2)
Hint: Derivation involves taking the sine of both sides and substituting using the trig sum
d/dx = arccos(x)
-1
—————-
Sqrt( 1-x^2 )
d/dx of arctan(x)
1
———-
1 + x^2