DET: Module 5&6 Flashcards
(20 cards)
Euler’s Formula
f(x) = a0/2 + ∑ancosnx + bnsinnx
a0 =1/π ∫f(x) dx
an =1/π ∫f(x) cosnx dx
bn =1/π ∫f(X) sinnx dx
limits: α to α+2π
Half Range cosine series
f(x) = a0/2 + ∑ancos(nπx/l)
a0 = 2/l ∫f(x) dx
an = 2/l ∫f(x) cos(nπx/l) dx
limits: 0 to l
Half Range sine series
f(x) = ∑bnsin(nπx/l)
bn = 2/l ∫f(x) sin(nπx/l) dx
limits: 0 to l
Parseval’s Identity
1/L ∫[f(x)]^2 dx = a0^2/2 + ∑an^2 + bn^2
∑1/n^2 =
π ^2 / 6
Summation of 1(odd#)^2 : ∑1/(2n-1)^2 =
π ^2 / 8
Fourier Transform
∫ f(x) e^isx dx
limits: -∞ to ∞
Inverse Fourier Transform
1/2π ∫ f(x) e^-isx dx
limits: -∞ to ∞
Fourier Cosine Transform
∫ f(x) cos sx dx
limits: 0 to ∞
Fourier Sine Transform
∫ f(x) sin sx dx
limits: 0 to ∞
Inverse Fourier Cosine Transform
2/π ∫ fc cos sx ds
limits: 0 to ∞
Inverse Fourier Sine Transform
2/π ∫ fs sin sx ds
limits: 0 to ∞
Finite Fourier Cosine Transform
∫ f(x) cos (nπx/c) dx
limits 0 to c
Finite Fourier Sine Transform
∫ f(x) sin (nπx/c) dx
limits 0 to c
e^i(ax) can be written as…
cos(ax) + isin(ax)
Fc and Fs of e^-ax
Fc = sqrt(2/π) . a/a^2+s^2
Fs = sqrt(2/π) . s/a^2+s^2
Fc and Fs of 1/x^2+a^2
Fc = sqrt(π/2) . e^-(as)/a
Fs = sqrt(π/2) . [1-e^-(as)]/a
Fc and Fs of x/x^2+a^2
Fc = sqrt(π/2) . e^-(as)
Fs = sqrt(π/2) . e^-(as)
∫ e^ax cosbx from 0 to ∞
a/a^2+b^2
∫ e^ax sinbx from 0 to ∞
b/a^2+b^2