Flashcards in DIG Unit 2 Deck (41):

1

## Design Process step 1

### Define problem

2

## Design Process step 2

### Generate concepts

3

## Design Process step 3

### Develop solutions (scientific research is needed to develop)

4

## Design Process step 4

### Construct and Test prototype

5

## Design Process step 5

### Evaluate solution

6

## Design Process step 6

### Present solution

7

## truth tables

### made of binary

8

##
boolean theorem 1) :

X*0=

### 0

9

##
boolean theorem 2) :

X*1=

### 1

10

## sum of products (SOP)

### the minterms added together

11

## products of sum

### idk

12

## design specs -- truth tables

### get output (z) from word problem

13

##
boolean theorem 5) :

X+0=

### X

14

##
boolean theorem 6) :

X+1=

### 1

15

##
boolean theorem 7) :

X+X=

### X

16

##
boolean theorem 8) :

X+-X=

(-X means X not or the X with the line(s) on top)

### 1

17

##
boolean theorem 9) :

--X=

(-X means X not or the X with the line(s) on top)

### X

18

##
boolean theorem 9) :

--X=

(-X means X not or the X with the line(s) on top)

###
X

19

## What math laws work with boolean algebra?

###
Communitive Laws

Associative Laws

Distributive Laws

20

##
Consensus Theorem 16) :

X+-XY=

(-X means X not or the X with the line(s) on top)

### X+Y

21

##
Consensus Theorem 17) :

-X+XY=

(-X means X not or the X with the line(s) on top)

### -X+Y

22

##
Consensus Theorem 18) :

X+-X-Y=

(-X means X not or the X with the line(s) on top)

### X+-Y

23

##
Consensus Theorem 19) :

-X+X-Y=

(-X means X not or the X with the line(s) on top)

### -X+-Y

24

##
DeMorgan's Theorem 20) :

__

XY=

### -X+-Y

25

##
DeMorgan's Theorem 20) :

___

X+Y=

### -X*-Y

26

##
DeMorgan's Theorem 20) :

___

X+Y=

### -X*-Y

27

## Rules base 10

###
0-9; 10 variables; deci-

starts over by 10-19 then 20-29 etc.

28

## Rules base 8

###
0-7; 8 variables; octal-

starts over by 10-17 then 20-27 etc.

29

## Rules base 16

###
0-9,A-F; 16 variables; hexadeci-

starts over by 10- 1F then 20-2F etc.

30

## label 7 segment display

### A-F inputs;

31

## IC Numbers

### ???

32

## NAND

### not and (and with invertor attached to output)

33

## NOR

### not or (or with invertor attached to output)

34

## AOI to NAND only

### pg 150

35

## AOI to NOR only

### pg 151

36

## K mapping

###
-K maps are a graphical technique used to simplify a logic equation

-k maps are much cleaner then Boolean algebra

-k maps can be used for any number of variables but only practical for 2, 3, and/or 4 variables

pg 36

37

## use NAND, NOR, AOI

### fireplace project is best example

38

## K mapping 2 variables

### pg 36- 40

39

## K mapping 3 variables

### pg 36-40

40

## K mapping 4 variables

### pg 36-40

41