Egzamin Flashcards

(101 cards)

1
Q

Powiedz na czym polega ten proces i jak można go inaczej nazwać:

redukcja progresywna

A

rozumowanie od nieznanej wartości logicznej, do znanej (weryfikacja)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Powiedz na czym polega ten proces i jak można go inaczej nazwać:

redukcja regresywna

A

rozumowanie od znanej wartości logicznej, do nieznanej (wyjaśnianie)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Jakie rozumowanie bierze udział w testowaniu w doświadczeniu zdań jednostkowych z hipotezy?

A

dedukcyjne

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Wyjaśnij, czym jest:

Modus

A

prawo logiczne

*tautologia

takie prawo, które przy każdym podstawieniu dadzą wartość logiczną prawdy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Powiedz, czym jest:

Zasada racji dostatecznej

principium rationis sufficientis

A

postulat uznawania zdania (twierdzenia)
dopiero po uzyskaniu jego wystarczającego uzasadnienia

(bezpośredniego lub pośredniego)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Powiedz, na czym polega:

Poznanie pośrednie

A

polega na myśleniu

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Powiedz, na czym polega:

Poznanie bezpośrednie

A

polega na doświadczeniu

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Jak można przedstawić:

Wnioskowanie

A

przesłanka - wniosek

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Jak można przedstawić:

Wynikanie logiczne

konsekwencja logiczna

A

racja - następstwo

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Jak można przedstawić:

Implikacja

A

poprzednik - następnik

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Wyjaślij, czym jest:

wnioskowanie upodabniające

A

szczególna postać rozumowania
zawodnego pożądanego w naukach realnych

(indukcyjnych)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Jakie są:

drogi uznawania zdań

A
  1. doświadczenie (wewnętrzne, zewnętrzne)
  2. wnioskowanie (dedukcyjne, redukcyjne)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Na czym polega:

uzasadnianie zdań

A

podążanie od tego następnika (wniosku) do poprzednika
(przesłanki/ek)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

W oparciu o co może nastąpić:

uzasadnianie bezpośrednie

A

**doświadczenie zewnętrzne ** (eksteroceptory) lub wewnętrzne

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

W oparciu o co może nastąpić:

uzasadnienie pośrednie

A

wnioskowanie

(np. z wykorzystaniem rozumowania dedukcyjnego, redukcyjnego)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Jakie są rodzaje:

rozumowanie proste

A
  • dedukcyjne
  • redukcyjne
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Wyjaśnij, czym jest:

fenomen

A

zdarzenie dające się zaobserwować zmysłowo

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Co pełni rolę zdań ogólnych w naukach empirycznych?

A

hipotezy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Jak można przedstawić:

dedukcja

A

zasada - przesłanka - wniosek

All coffee drinks from this bar are sour - This coffe drink is from this bar - This coffee drink is sour

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Jak można przedstawić:

indukcja

A

przesłanka - wniosek - zasada

IF this coffee drink is from this bar, THEN -** this coffee drink is sour** - All coffee drinks from this bar are sour.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Jak można przedstawić:

abdukcja

A

zasada - wniosek - przesłanka

All coffee drinks from this bar are sour - This coffee drink is sour- This coffee drink is from this bar

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Jakich operacji dotyczy prawo rozdzielności?

A

mnożenia i dzielenia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Czym różnią się pojęcia:

cecha a zmienna

A

cecha, to termin opisujący coś, ze świata rzeczywistego, a zmienna - ze świata logiki, matematyki

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Kiedy możemy powiedzieć, że próba jest reprezentacyjna?

A

kiedy jest kopią w populacji w zakresie danej cechy

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
# Co to jest: relacja 2-argumentowa
relacja pomiędzy obiektem jednego zbioru a drugiego zbioru | (np. mieszkańca Łodzi, do mieszkańca Warszawy)
26
# Jak możemy nazwać: **zbiór argumentów** funkcji?
dziedzina, pole
27
# Na czym polega: przyporządkowanie wielo-wieloznaczne
każdy element jednego zbioru można przyporządkować każdemu elementowi drugiego
28
# Kiedy mamy do czynienia z: cecha stała
wszystkie elementy zbioru przyjmują tą samą wartość danej cechy ## Footnote wystarczy jedna obserwacja inna niż pozostałe, żeby powiedzieć, że mamy do czynienia z **cechą zmienną**
29
# Czym charakteryzują się: zmienne dychotomiczne
* przyjmują 2 wartości * musi być spełniony warunek rozłączności podzbiorów ## Footnote (nie może być tak, że jednemu elementowi przypiszemy jedną i drugą wartość tej zmiennej np. *TAK*/*NIE*)
30
# Jak dzielą się: metody pomiaru
* pośrednie * bezpośrednie
31
# Czym są: zbiory realiów
obiekty i cechy oraz ich relacje
32
# Czym jest: funkcja abstrakcji
relacja między obiektem a warościami cech
33
# Z czego składa się: funkcja pomiaru
funckja abstrakcji + funkcja skalowania
34
# Prawda czy fałsz: skala pomiaru = poziom pomiaru
fałsz | Poziom pomiaru to *moc skali*.
35
# Pawda czy fałsz: skala przedziałowa = skala interwałowa
prawda
36
# Prawda czy fałsz: Im większa moc skali, tym mniej precyzyjna obserwacja.
prawda | Im większa moc skali, tym bardziej precyzyjna obserwacja.
37
# Wyjaśnij dlacezgo: Przy skali stosunkowej możemy powiedzieć o ile razy coś jest większe lub mniejsze.
mamy jakieś "zero", do którego możemy odnieść wynik
38
# Prawda czy fałsz: Przekształcanie zbioru A **na** zbiór B to nie jest tym samym, co przekształcanie zbioru A **w** zbiór B.
prawda
39
# Czym jest: *redundancja*
nadmiarowość jakiegoś zbioru
40
# Kiedy ma miejsce: hipokryzja metodologiczna
bezpodstwanie zakładamy, że możemy wykonywać inne operacje arytmetyczne na wartościach skal niż dodawanie i odejmowanie
41
# Co łączy: strategia mieszana ## Footnote STRATEGIE GROMADZENIA I ANALIZY DANYCH
strategia ilościowa i jakościowa ## Footnote STRATEGIE GROMADZENIA I ANALIZY DANYCH
42
Dlaczego w przypadku **statystyki opisowej** nasze wnioskowanie jest niezawodne?
ponieważ mamy dostęp do wszystkich danych
43
Z czym związana jest analiza struktury?
z rozkładem cechy
44
# Prawda czy fałsz: Liczba jest obiektem abstrakcyjnym.
prawda
45
# Czym jest: *pozycyjność*
zasada, zgodnie z którą liczby zapisuje się cyframi w taki sposób, że pozycja danej cyfry oznacza wartość liczby | (123, to 1 setka, 2 dziesiątki i 3 jednostki) ## Footnote PODSTAWY ARYTMETYKI
46
# Wyjaśnij, na czym polega: przemienność ## Footnote PODSTAWOWE PRAWA ARYTMETYKI
wynik dodawania i mnożenia nie zależy od kolejnosci składników/czynników | (dzielenie i odejmowanie nie są działaniami przemiennymi)
47
# Na czym polega: łączność
wynik dodawania i mnożenia nie zależy od sposobu łączenia liczb (składników/czynników) | (dzielenie i odejmowanie nie są działaniami łącznymi) ## Footnote PODSTAWOWE PRAWA ARYTMETYKI
48
# Na czym polega: rozdzielność ## Footnote PODSTAWOWE PRAWA ARYTMETYKI
wynik mnożenia i dzielenia nie zależy od tego, czy działanie na wyniku działania z nawiasu, czy na składnikach działania z nawiasu ## Footnote PODSTAWOWE PRAWA ARYTMETYKI
49
# Jak możemy nazwać: **zbiór x**, w funcji *f(x) = y* ## Footnote ZALEŻNOŚĆ FUNKCYJNA I RELACJA F
dziedzina/pole ## Footnote ZALEŻNOŚĆ FUNKCYJNA I RELACJA F
50
# Jak możemy nazwać: **zbiór y**, w funcji *f(x) = y* ## Footnote ZALEŻNOŚĆ FUNCKYJNA I RELACJA F
przeciwdziedzina/zakres ## Footnote ZALEŻNOŚĆ FUNCKYJNA I RELACJA F
51
# Czym jest: modelowanie matematyczne ## Footnote POMIAR
odwzorowanie cech przedmiotów lub zdarzeń liczbami | w procesie mierzenia wyznacza się liczby, cechy przedmiotów ## Footnote POMIAR
52
# Czym jest: skalowanie ## Footnote POMIAR
przyporządkowanie symboli różnym wartościom cechy, lecz w taki sposób, by relacje między tymi symbolami odwzorowywały także relacje pomiędzy wartościami cechy | odwzorowanie cechy symbolem nazywa się ***funkcją skalowania*** ## Footnote POMIAR
53
# Czym zajmuje się: statystyka **opisowa** ## Footnote DZIAŁY STATYSTYKI
analiza struktury, współzależności, dynamiki | m.in. określanie cech zbiorowości, zmian zjawiska w czasie ## Footnote DZIAŁY STATYSTYKI
54
# Czym zajmuje się: statystyka **indukcyjna** | (wnioskowanie statystyczne) ## Footnote DZIAŁY STATYSTYKI
estymacja i weryfikacja hipotez statystycznych dotyczących rozkładów zmiennych i ich parametrów ## Footnote DZIAŁY STATYSTYKI
55
# Prawda czy fałsz: Kwartyle i mediana to rodzaje kwantyli.
prawda
56
# Jakie jest zastosowanie: średnia **geometryczna**
badanie średniego tempa zmian zjawisk, gdy zjawiska zmieniają się w ujęciu dynamicznym; średnia geometryczna mówi o wzroście lub spadku wartości danej zmiennej w badanym okresie
57
# Jak można inaczej nazwać: rodzina miar położenia
rodizna miar tendencji centralnej
58
# Jak można inaczej nazwać: spłaszczenie rozkładu
skupienie, koncentracja
59
# Prawda czy fałsz: Odchylenie standardowe to pierwiastek kwadratowy z dystrybuanty.
fałsz | Odchylenie standardowe to pierwiastek kwadratowy z wariancji.
60
# Jak można podzielić: miary struktury
* klasyczne * pozycyjne | Miary klasyczne to średnie. Miary pozycyjne to dominanta, kwantyle. ## Footnote Istnieją miary: położenia, zmienności, asymetrii (skośności) i spłaszczenia
61
# Prawda czy fałsz: Jeżeli dominanta i średnia arytmetyczna są równe, to rozkład jest asymetryczny.
fałsz ## Footnote Jeżeli dominanta i średnia arytmetyczna są równe, to rozkład jest symetryczny.
62
# Kiedy stosuje się: średnia **harmoniczna**
wartości cechy podawane są w przeliczeniu na stałą jednostkę innej zmiennej, czyli w postaci wskaźników natężenia | np. prędkość pojazdu w km/godz., zagęszczenie ludności
63
# Jak można nazwać: wynik doświadczenia losowego ## Footnote ROZKŁAD WIELKOŚCI LOSOWEJ
zdarzenie elementarne | (losowe) ## Footnote ROZKŁAD WIELKOŚCI LOSOWEJ
64
# Czym są: parametry ## Footnote WŁASNOŚCI I PARAMETRY ROZKŁADÓW PRAWDOPODOBIEŃSTWA
liczbowe charakterystyki własności rozkładów prawdopodobieństwa | nazywane też miarami
65
# Jal wygląda: szereg rozdzielczy ## Footnote SZEREG STATYSTYCZNY
przedstwaiony w postaci dwukolumnowej tabeli statystycznej
66
# Jak inaczej nazwać: miary położenia ## Footnote ANALIZA STRUKTURY
miary tendencji centralnej ## Footnote ANALIZA STRUKTURY
67
# Jak inaczej nazwać: miary zmienności ## Footnote ANALIZA STRUKTURY
miary zróżnicowania, rozproszenia ## Footnote ANALIZA STRUKTURY
68
# Jak inaczej nazwać: miary skośności ## Footnote ANALIZA STRUKTURY
miary asymetrii ## Footnote ANALIZA STRUKTURY
69
# Jak inaczej nazwać: miary spłaszczenia ## Footnote ANALIZA STRUKTURY
miary skupienia, koncentracji ## Footnote ANALIZA STRUKTURY
70
# Jak brzmi: **aksjomatyczna** definicja prawdopodobieństwa
*prawdopodobieństwo* - funkcja, która każdemu zdarzeniu przyporządkowuje pewną liczbę rzeczywistą
71
# Jak brzmi: **klasyczna** definicja prawdopodobieńtwa
*prawdopodobieństwo* - iloraz liczby zdarzeń sprzyjających zdarzeniu A do liczby wszystkich możliwych przypadków, zakładając, że wszystkie przypadki wzajemnie się wykluczają i są jednakowo możliwe
72
# Jak nazywamy: moment zwykły rzędu pierwszego
wartość przeciętna lub wartość oczekiwana
73
Do ilu sumują się wszytskie odchylenia od sredniej?
do 0
74
# Czym charakteryzuje się: rozkład zero-jedynkowy
* może przyjąć tylko dwie wartości * mówimy o nim, kiedy mamy do czynienia z **jednorazowym wydarzeniem losowym**
75
# Czym charakteryzuje się: rozkład dwumianowy | (Bernoulli'ego)
- może przyjąć tylko dwie wartości - mówimy o nim, kiedy mamy do czynienia z **wielorazowym wydarzeniem losowym** ## Footnote Jeśli chcemy, żeby wypadł nam orzeł, to w schemacie Bernoulli’ego nazwiemy wypadnięcie orła *sukcesem*, a reszki *porażką*.
76
# Czym charkteryzuje się: rozkład Poissona
* wykorzystuje się go w przypadku **zdarzeń rzadkich**
77
# Prawda czy fałsz: Prawdopodobieństwo pewnej wartości jest tym niższe, im ta wartość bardziej różni się od μ. ## Footnote REGUŁA TRZECH SIGM
prawda ## Footnote REGUŁA TRZECH SIGM
78
# Prawda czy fałsz: Prawdopodobieństwo realizacji wartości wielkości losowej w granicach 3σ od μ bliskie jest zera. ## Footnote REGUŁA TRZECH SIGM
fałsz ## Footnote Prawdopodobieństwo realizacji wartości wielkości losowej w granicach 3σ od μ bliskie jest **jedności**.
79
# O czym mówi nam: przedział ufności (CI) | (confidence interval)
od jakiej wartości do jakiej wartości na osi X interesują nas przyjmowane wartości
80
# O czym mówi nam: poziom ufnośći (CL) | (confidence level)
prawdopodobieństwo z jakim przedział pokrywa jakąś nieznaną wartość
81
# Na czym polega: związek funkcyjny
przyporządkowanie każdemu elementowi jednego zbioru dokładnie jednego elementu drugiego zbioru
82
# Na czym polega: związek stochastyczny
wraz ze zmianą wartości jednej wielkości losowej, zmienia się rozkład prawdopodobieństwa wartości drugiej wielkości losowej
83
# Podaj przykładowe: klasyczne miary położenia ## Footnote MIARY POŁOŻENIA
* średnia arytmetyczna * średnia harmoniczna * średnia geometryczna ## Footnote MIARY POŁOŻENIA
84
# Podaj przykładowe: pozycyjne miary położenia ## Footnote MIARY POŁOŻENIA
* **dominanta** (inaczej *modalna*, *moda*) * **kwantyle** (*mediana* - 1/2, *kwartyle* - 1/4, *kwintyle* - 1/5, *decyle* - 1/10, *percentyle* - 1/100) ## Footnote MIARY POŁOŻENIA
85
# Czym charakteryzuje się (2): średnia arytmetyczna
* wrażliwa na obserwacje odstające * służy do liczenia wariancji
86
Jak oblicza się **średnią winsorowską**? ## Footnote INNE MIARY ŚREDNIE
Zastępuje się skrajne obserwacje wartością maksymalną i minimalną z pozostałej ("środkowej") części. ## Footnote INNE MIARY ŚREDNIE
87
Jak oblicza się średnią ucinaną? | (trymowaną) ## Footnote INNE MIARY ŚREDNIE
Obserwacje porządkuje się od najmniejszej do największej, odrzuca się mały procent najbardziej ekstremalnych obserwacji na obu krańcach, a następnie oblicza się średnią z pozostałych obserwacji. | Jest ona **bardzo odporna na obserwacje nietypowe**. ## Footnote INNE MIARY ŚREDNIE
88
W przypadku jakich cech nie można użyć **mediany**? ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
mierzonych na skali **nominalnej** ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
89
W przypadku jakich cech nie można użyć **średniej arytmetycznej**? ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
mierzonych na skali **nominalnej** lub **porządkowej** ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
90
W przypadku jakich cech nie można użyć **średniej arytmetycznej**? ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
mierzonych na skali **nominalnej** lub **porządkowej** ## Footnote WARUNKI STOSOWANIA MIAR POŁOŻENIA
91
# Jak można podzielić: miary zmienności | (zróżnicowania)
* **bezwzględne** (rozstęp, odchylenie kwadratowe, średnie odchylenie kwadratowe, odchylenie standardowe, odchylenie przeciętne, odchylenie kwartylowe) * **względne** (współczynnik zmienności)
92
# Jak inaczej można nazwać: średnie odchylenie kwadratowe ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
wariancja ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
93
# Jak obliczyć: odchylenie standardowe ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
pierwiastek kwadratowy z wariancji ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
94
# Czym jest: odchylenie kwadratowe ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
suma kwadratów odchyleń od średniej ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
95
O czym mówi nam **odchylenie przeciętne** ? ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
o ile wszytskie jednostki średnio różnią się od średniej ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
96
# Czym jest: odchylenie kwartylowe | (ćwiartkowe) ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
połowa różnicy pomiędzy trzecim a pierwszym kwartylem ## Footnote BEZWZGLĘDNE MIARY ZMIENNOŚCI (ZRÓŻNICOWANIA)
97
# Cyzym jest: współczynnik zmienności ## Footnote WZGLĘDNE MIARY ZMIENNOŚCI
stosunek odchylenia standardowego do średniej ## Footnote WZGLĘDNE MIARY ZMIENNOŚCI
98
# Jak wygląda: asymetria prawostronna ## Footnote MIARY SKOŚNOŚCI
ogon na prawo ## Footnote MIARY SKOŚNOŚCI
99
# Jak wygląda: asymetria lewostronna ## Footnote MIARY SKOŚNOŚCI
ogon na lewo ## Footnote MIARY SKOŚNOŚCI
100
# Czym są: miary spłaszczenia
miary koncentracji obserwacji wokół przeciętnej
101
# Czym charakteryzuje się: rozkład leptokurtyczny ## Footnote MIARY SPŁASZCZENIA
wartości danej cechy są skoncentrowane wokół średniej ## Footnote MIARY SPŁASZCZENIA