ENDOCRINOLOGY Flashcards
(212 cards)
What are the 4 cells to make up the islets of langerhans?
- Beta cells (70%).
- Alpha cells (20%).
- Delta cells (8%).
- Polypeptide secreting cells.
What do a) beta cells b) alpha cells c) delta cells produce?
a) insulin
b) glucagon
c) somatostatin
What is the importance of the alpha and beta cells being located next to each other in the islets of langerhans?
This enables them to ‘cross talk’ - insulin and glucagon show reciprocal action.
Describe the physiological processes that occur in the fasting state in response to low blood glucose.
Low blood glucose = high glucagon and low insulin.
- Glycogenolysis and gluconeogenesis.
- Reduced peripheral glucose uptake.
- Stimulates the release of gluconeogenic precursors.
- Lipolysis and muscle breakdown.
Describe the effect on insulin and glucagon secretion in the fasting state.
Fasting state = low blood glucose.
Raised glucagon and low insulin.
Describe the physiological processes that occur after feeding in response to high blood glucose.
High blood glucose = high insulin and low glucagon.
- Glycogenolysis and gluconeogenesis are suppressed.
- Glucose is taken up by peripheral muscle and fat cells.
- Lipolysis and muscle breakdown suppressed.
Describe the effect on insulin and glucagon secretion after feeding.
Insulin is high and glucagon is low.
A diagnosis of diabetes can be made by measuring plasma glucose levels. What would a persons fasting plasma glucose be if they were diabetic?
Fasting plasma glucose >7mmol/L.
A diagnosis of diabetes can be made by measuring plasma glucose levels. What would a persons random plasma glucose be if they were diabetic?
Random plasma glucose >11mmol/L.
A diagnosis of diabetes can be made by measuring plasma glucose levels. What would the results of the oral glucose tolerance test be if someone was diabetic?
Fasting plasma glucose >7mmol/L and 2-hour value >11mmol/L.
What might someone’s HbA1c be if they have diabetes?
> 48mmol/mol.
What is the affect of cortisol on insulin and glucagon?
Cortisol inhibits insulin and activates glucagon.
Describe the aetiology of type 1 diabetes mellitus.
Beta cells express HLA antigens. Autoimmune destruction -> beta cell loss -> impaired insulin secretion.
Is type 1 diabetes characterised by a problem with insulin secretion, insulin resistance or both?
Type 1 diabetes is characterised by impaired insulin secretion - there is severe insulin deficiency.
At what age do people with T1DM present?
Often people with Type 1 diabetes will present in childhood.
Give 2 potential consequences of T1DM.
- Hyperglycaemia.
2. Raised plasma ketones -> ketoacidosis.
Describe the natural history of T1DM.
Genetic predisposition + trigger -> insulitis, beta cell injury -> pre-diabetes -> diabetes.
T1DM is characterised by impaired insulin secretion. Describe the pathophysiological consequence of this.
- Severe insulin deficiency -> glycogenolysis /gluconeogensis /lipolysis all not suppressed
- Addition of reduced peripheral glucose uptake -> hyperglycaemia and glycosuria.
- Perceived stress -> cortisol and Ad secretion -> catabolic state -> increased plasma ketones.
Give 3 symptoms of T1DM.
- Weight loss.
- Thirst (fluid and electrolyte losses).
- Polyuria (due to osmotic diuresis).
Would you associate ketoacidosis with T1 or T2 DM?
TYPE 1.
Occurs due to the absence of insulin.
Describe the pathophysiology of diabetic ketoacidosis.
- INSUFFICIENT insulin -> less glucose available
- Increased KETOGENESIS
- Ketoacidosis
Name 3 ketone bodies.
- acetoacetate.
- acetone.
- beta hydroxybutyrate.
Where does ketogenesis occur?
In the liver.
Give 4 signs of diabetic ketoacidosis.
- Vomiting/ Abdo pain
- KUSSMAUL breathing
- Breath smells of ketones. (fruity)
- Dehydration. (tachycardia/hypotension)