Exam Trig Flashcards
(13 cards)
Sum & Difference Formulas
sin(u+v) = sinu x cosv + cosu x sinv
sin(u-v) = sinu x cosv - cosu x sinv
cos(u+v)= cosu x cosv - sinu x sinv
cos(u-v)= cosu x cosv + sinu x sinv
tan(u+v) = (tanu + tanv)/ (1- tanu x tanv)
tan(uv) = (tanu - tanv)/ (1+ tanu x tanv)
Double Angle Formulas
sin2u = 2sinu cosu
cos2u = cos^2u - sin^2u
cos2u = 2cos^2u - 1
cos2u= 1-2sin^2u
tan2u= (2tanu)/ (1-tan^2u)
General Identies:
sin^2u + cos^2u = 1
1+tan^2u=sec^2u
1+cot^2u=csc^2u
y=tanx
asympotes: π/2, 3π/2, -π/2, -3π/2
range: -infinity, + infinity
period: π
cycle: bx-c= -π/2 & bx-c=π/2
y=sinx & cosx
y=k__(bx+c) +d
|k|= amplitude
bx-c= 0
bx-c= 2π
phase shift= c/b
vertical shift= d
y=secx
asymptotes: π/2, 3π/2, -π/2, -3π/2
bx-c= -π/2
bx-c= π/2
y=cscx
asymptotes:-2π, -π, 0, -π, 2π
bx-c=0
bx-c= π
bx-c = 2π
y=cotx
asymptotes:-2π, -π, 0, -π, 2π
bx-c=0
bx-c = 2π
y=arcsinx
domain: [-1,1]
range: [-π/2, π/2]
y=arccosx
domain: [-1,1]
range: [0, π]
y=arctanx
domain: (-infinity, infinity)
range: (-π/2, π/20
limit (sinx)/x =
x»0
1
limit (1-cosx)/x =
x»0
0