Expert II Rational Expressions, Expert II Expressions rationnelles, In 30-2 and 20-1 Flashcards

(13 cards)

1
Q

What is a non-permissible value?

NPV is the abbreviation.

Qu’est-ce qu’une valeur non admissible ?

VNA

A

These are all the values that variable is not allowed to equal, and usually signifies values such that a division of zero would be required. Since division by zero is not permissible, any value that makes a division of zero occur is called a non-permissible value.

Non-permissible values can also arise from other math concepts such as the even root if a negative number.

Il s’agit de toutes les valeurs que la variable n’est pas autorisée à égaler, ce qui signifie généralement des valeurs telles qu’une division par zéro serait nécessaire. Étant donné que la division par zéro n’est pas autorisée, toute valeur qui entraîne une division par zéro est appelée valeur non admissible.

Les valeurs non permises peuvent également découler d’autres concepts mathématiques tels que la racine paire d’un nombre négatif.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

How do you calculate the non-permissible values of a rational expression in order to avoid division by zero?

Comment calculer les valeurs non admissibles d’une expression rationnelle afin d’éviter la division par zéro ?

A

Factor everything first.

Look at the denominator and set the entire denominator equal to zero.

If you have AB=0 then either A=0 or B=0 or they are both equal to each other and are both 0. So sweet each factor equal to zero.

Solve each linear equation for the variable.

The non-permissible values are the values you just determined.

Factorisez tout d’abord.

Regardez le dénominateur et mettez tout le dénominateur à zéro.

Si AB=0, alors soit A=0, soit B=0, soit ils sont tous les deux égaux et tous les deux à 0, il faut donc que chaque facteur soit égal à zéro.

Résolvez chaque équation linéaire pour la variable.

Les valeurs non admissibles sont celles que vous venez de déterminer.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Make sure you can factor any trinomial.

If you have forgotten how to factor by decomposition, visit the math 10 resources on factoring.

Also memorize the special cases such as difference of squares.

Assurez-vous de pouvoir factoriser n’importe quel trinôme.

Si vous avez oublié comment factoriser par décomposition, consultez les ressources de maths 10 sur la factorisation.

Mémorisez également les cas particuliers tels que la différence des carrés.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

How can you simplify a rational expression?

Comment simplifier une expression rationnelle ?

A

Factor

Determine NPVs

Simplify: Any factors that appear in the numerator and denominator can be divided to 1 and the 1 does not need to be written if multiplied into another expression. Thus these factors end up canceling each other.

Factoriser

Déterminer les VNA

Simplifier: Tous les facteurs qui apparaissent au numérateur et au dénominateur peuvent être divisés par 1 et le 1 n’a pas besoin d’être écrit s’il est multiplié dans une autre expression. Ces facteurs finissent donc par s’annuler.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Make sure that you know basic math from prior grades including how to add, subtract, multiply, and divide fractions.

A

You will need to be able to do all of these within the context of polynomials in the numerators and denominators.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Jeremy is training for a bike race by biking to his friend’s house. Jeremy biked 144km to Sam’s house and then Jeremy biked 144km back to his own house. He biked twice as fast on his way to Sam’s house. His total time was 22 hours. What rate, to the nearest tenth, did Jeremy bike both directions?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Susan takes 5h to paint a standard double garage. It takes her father George 3h to paint the same standard double garage. How long will it take then to paint on standard garage if they work together?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

A plane flew from Chicago to Edmonton at 750km/h. If it had flown at 600km/h, the trip would have taken an hour longer. What is the flying distance from Chicago to Edmonton?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Two friends share a paper route. Alex can deliver the papers in 40 min. Jordan takes 50 minutes for the same area. To the nearest minute, how long would it take them if they worked together?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Jim walked 12 km. He then biked 5 times as fast for another 100 km. The total time for the trip was 8 h. Determine the rates for each activity and the time Jim spent doing each.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Sheldon and Simon leave Sherwood Park in opposite directions. Simon is going 18 km/h faster. In 6 hours they are 972 km apart. Find the distance that each travelled.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

John goes from A to B in 10 h and B to A in 8 h. Rate going back was 15 km/h more than going there. How far from A to B?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Sandra left Calgary driving east at 90 km/h. Paul left Calgary 2 hours later
(10:00 a.m.) at 110 km/h. What time did Paul catch up to Sandra?

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly