final exam Flashcards
(50 cards)
1
Q
Slicing method
A
Integral of area
2
Q
disk method
A
pi*integal of radius squared
3
Q
washer method
A
pi* integral of outer radius square minus inner radius squared
4
Q
shell method
A
integral of 2pi(r)*height
5
Q
arc length formula
A
L=integral of sqrrt(1+(fâ(x))^2)
6
Q
surface area
A
integral of 2pi(r)*ArcL
7
Q
integration by parts
A
uv-Integral(vdu)
8
Q
Int. of cosx
A
sinx
9
Q
Int. of sinx
A
-cosx
10
Q
Int. of sec^2(x)
A
tanx
11
Q
Int. of secx
A
ln|secx+tanx|
12
Q
Int. of csc^2(x)
A
-cotx
13
Q
Int. of secx tanx
A
secx
14
Q
Int. of cscx cotx
A
-cscx
15
Q
Int. of cscx
A
-ln|cscx+cotx|
16
Q
Int. of tanx
A
ln|secx|
17
Q
Int. of cotx
A
ln|sinx|
18
Q
sin^2(x)+cos^2(x)
A
1
19
Q
1+cot^2(x)
A
csc^2(x)
20
Q
tan^2(x) +1
A
sec^2(x)
21
Q
sin^2(x)
A
(1-cos(2x))/2
22
Q
cos^2(x)
A
(1+cos(2x))/2
23
Q
sin(2x)
A
2sinxcosx
24
Q
Trig substitution 1st step
A
draw a triangle
25
fraction decomposition
linear factor: A + B
Repeated factor: A/x + B/x-a + C/(x-a)^2
Quadratic Factor: A + (Bx + C)
26
improper integrals
use a limit
27
Geometric Series
a[(1-r^k)/(1-r)]
i. |r|>= 1 diverges
ii. |r| < converges
28
Divergence Test
lim(ak) not 0 then diverges
29
Integral test
f(x) is postive, continuous, decreasing
ak behaves the same as integral
30
p series (1/n^p)
p>1 converges
p<=1 diverges
31
comparison test
bk > ak behave the same
32
direct comparison test
if ak < bk and bk converges, ak converges
if ak>bk and bk diverges, ak diverges
33
sequence convergence test
USE LIMIT
34
limit comparison test
if lim (an/bn) not = 0 then behave the same
if lim (an/bn) = 0 and bn converge, then an converges
if lim (an/bn) = infinity and bn diverges, then an diverges
35
Alternating series test
i. divergence test, lim = 0
ii. a(k+1) < ak
converges
36
Absolute convergence test
if sum |ak| converges, ak converges absolutely
37
Ratio test
r = lim |a(k+1)/ak|
i. r<1 converges
ii. r>1 diverges
iii. r=1 inconclusive
38
root test
p = lim krt(|ak|)
i. p<1 converges
ii. p>1 diverges
iii. p=1 inconclusive
39
convergence of power series
ratio test, |r| <1, solve for x
40
check endpoints
plug in endpoints for x then do a test (alternating series or p test)
41
finding Taylor series
p(x) = c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...
c0 = f(a)
c1 = f'(a)/1!
c2 = f''(a)/2!
c3 = f'''(a)/3!
42
Maclaurin series
taylor series where a=0
43
binomial expansion
sum of (r n) x^n = (r 0)x^0 + (r 1)x + (r 2)x^2 + (r 3)x^3 +... = 1 + rx/1! + r(r-1)x^2 /2! + r(r-1)(r-2)x^3 /3! +...
44
parametric equations
make table with x, y, t and the draw the graph and mark direction
45
eliminate parameter
solve for x or y and substitute
46
finding tangent line
find dy/dx and then plug in point for tangent line y =mx +b
47
critical points
dy/dx = 0 or UND
48
polar coordinate formulas
x^2 + y^2 = r^2
x=rcosO
y=rsinO
tanO = y/x
49
Area of cardiod
1/2 Int. r^2 dO
Use symmetry
50
completing the square
ax^2+bx+c+(b/2)^2-(b/2)^2