Fluid Mechanics Y2 Flashcards
(30 cards)
Material Derivative
D()/Dt = δ()/δt + grad(*)·u>
Grad(x)
∇x
Div(x)
∇·x
Curl(x)
∇×x
Continuity Equation
0 = δρ/δt + div(ρu>)
Euler Equations
ρ Du>/Dt = -grad>(p) + fbody>
Speed of sound in a perfect gas
c = sqrt( γ R T )
Isentropic Pressure relation (fb)
p0/p = ( 1 + (γ-1)/2 * M2 ) γ / (γ-1)
Isentropic Density Relation (fb)
ρ0/ρ = ( 1 + (γ-1)/2 * M2 ) 1 / (γ-1)
Isentropic Temperature Relation (fb)
T0/T = 1 + (γ-1)/2 * M2
Area-Mach Relation In converging-diverging nozzles (fb)
A/A* = 1/M * { 2/(γ+1) * [1 + (γ-1)/2 * Μ2] } (γ+1)/2(γ-1)
Maximum nozzle flow rate (fb)
mdotmax = p0 A* sqrt( γ/RT ) (2/γ+1) (γ+1)/2(γ-1)
Area-Velocity Relation for 1D compressible isentropic flow
dA/A = dU/U ( M2 - 1 )
Cauchy equations
δu>/δt + grad(u>) * u> = -1/ρ grad(p) + 1/ρ div(τ) + fbody/ρ
Navier Stokes equations for incompressible flow
div(u>) = 0
δu>/δt + grad(u>) * u> = -1/ρ grad(p) + μ/ρ Lap(u) + fbody/ρ
Boundary Layer Equations
δu/δx + δv/δy = 0
u δu/δx + v δu/δy = -1/ρ δp/δx + v δ^2u/δy^2
δp/δy = 0
All equations assume
Continuum
Euler Eqs Assume
Inviscid fluid
Continuum
Isentropic Flow Relations Assume
- Steady
- No body forces
- Inviscid
- Perfect Gas
- Isentropic flow (duh)
- Flow along streamline
- Continuum
Max flow rate eqns assume
Same as isentropic flow
Cauchy Eqns Assume
Continuum only
Navier-Stokes eqns assume
- Incompressible Flow
- Newtonian Fluid
- Continuum
Boundary Layer Eqns assume
- Steady Flow
- Incompressible Flow
- No Body Forces
- Newtonian Fluid
Newtonian Viscosity Constitutive Relation
τ = 2 μ D + λ div(u>) I