Formulas Flashcards
(42 cards)
Modulus turning point
- Separate ONLY MODULUS PART into >0 and <0
- Solve for x, the answer on the other side
Finding f^-1 of a function
- MUST BE 1 TO 1 FUNCTION
- Let y = f(x)
- Solve for x
- Re substitute x for y
f(-x)
Reflection in y axis, so all negative x values became positive
-f(x)
Reflection in the x axis, so all negative Y values become positive
Order of transformations
REFLECTIONS FIRST e.g 2f(-x+5), REFLECT X VALUES FIRST
STRETCHES NEXT e.g 2f, so xY by 2 next
THEN TRANSLATIONS LAST y+7 or x+5 last ok
Gf(x)
Means g of f(x) so substitute f(x) wherever there in an x in G
Sec x
1/cosx
Sec x asymptotes
Wherever cos x = 0, so +-90, 270 etc
Cosec x
1/ sin x
Cosec asymptotes
Wherever sin x is 0, so +- 180, 360 etc
Cot x
1/tan x
Cot asymptotes
Wherever tan x =0, so +-180, 360, lines go other way
Sec ^2 x = ?
1 + tan^2 x = sec ^2 x
Cosec^2 x = ?
1 + cot^2 x
Arc sin arc cos and arc tan are what?
Sin^-1, cos^-1 and tan^-1
Range and domain of arc sin
Range: -pi/2 to pi/2
Domain: -1 to 1
Range and domain of arc cos
Range: 0 to pi
Domain -1 to 1
Range and domain of arctan
Range: -pi/2 to pi/2
Domain: all real numbers
Identity with arc sin and arc cos (hint: sum of them)
Arc sin + Arc cos = pi/2
Sin (A+B)
Sin (A- B)
SinACosB + SinBCosA
SinACosB - SinBCosA
Cos (A+B)
Cos (A - B)
CosACosB - SinASinB
CosACosB + SinASinB
Tan (A+B)
Tan (A- B)
TanA + Tan B / 1- TanATanB
Tan - TanB / 1 + TanATanB
Sin2A
2sinACosA
Cos2A
Cos^2 A - Sin^2 A
1 - 2Sin^2 A
2Cos^2 A - 1