integrals Flashcards
∫dx/ root a2- x2
sin inv (x/a )
∫dx/ax + b
1/a ln (ax+b)
∫a^(px+q)
∫ 1/p a(px+q)/lna
∫sin(ax+b)
-1/a cos(ax+b)
∫cos(ax+b)
i/a sin(ax+b)
∫tan (ax+b)
1/a ln (sec(ax+b))
∫cot(ax+b)
1/a ln (sin ax+b)
∫sec^2 ax+b
1/a tan ax+b
∫sec^2 (ax+b)
1/a tan(ax+b)
∫cosec^2 (ax+b)
-1/a cot(ax+b)
∫cosecx.cotx
cosecx
∫secx. tanx
secx
∫cosecx
ln(cosecx-cotx)
∫dx/ a2+ x2
1/a tan inv(x/a)
∫dx/ root x2+ a2
ln [x+ root x2+ a2]
∫dx/ x root x2- a2
1/a sec inv(x/a)
∫dx/ root x2 - a2
ln [x+ root x2- a2]
∫dx/ a2- x2
1/2a (ln mod a+x/a-x)
∫dx/ x2- a2
1/2a (ln mod x-a/ x+a)
∫root a2- x2 dx
(x/2) (root a2- x2) + (a2/2) (sin inv x/a)
∫root x2+ a2
(x/2) (root a2+ x2) + (a2/2) ln (x+ root x2+ a2)
∫root x2- a2
(x/2) (root a2- x2) - (a2/2) ln (x+ root x2- a2)
∫e^ax.sinbx dx
e^ax(acosbx+bsinbx)/a^2+b^2
∫e^ax.cosbx dx
e^ax(acosbx-bsinbx)/a^2+b^2