know Flashcards
(44 cards)
universe
attributes
Va
all go U={x,x,x}
indiscernibility relation IND{A}
son las equivalences y van en {{z,z},{s}}
aqui tienes que fijarte que te pide
B lower es
100 cierto
B upper
si y no
positive region es
todo lo que en base a lo que te dicen es cierto ojo lo falso tambien cuenta
decision system
A=(U, A U {d})
Boundary region es
b lower - b upper
accuracy of the approximation
b upper / b lowe
generalized decision
es cuando pones cada INDa osea la equivalence class con su decision
no es consistente si tiene varios numeros
decision relative discernability matrix
haces la tabla con las equivalence y pones las diferencias aqui es DECISION RELATIVE entonces si tienen la misma decision pones TETA
boolean discernabilityfunction
es poner todas las diferencias pero en (xx) y las escibres asi
fA(attributos) = (X^b) v (ddhdh)
y luego haces la simplificacion
ojo con la simplificacion
tiene que tener todo los valores con lo que debes simplificar por eso es bueno tener una pqeuña
support?
Number of objects that fulfill the rule
te van a dar una regla y support es todos los que la cumplen completamente
accuracy es…
A fraction of correctly classified objects for the rule conditions
support / todos los que tiene la misma regla pero no la misma decision. entonces todos los que estan en la misma equivalnece class|
coverage es…
support /# de objetos que son la regla contraria
strenght…
support/todos los objetos en el universo
what is the point of using Boolean reasoning in rough sets?
Boolean reasoning is used to obtain the reducts
Why do we need to do discretization?
Because in rough sets we use boolean reasoning and for that we need discrete data.
supervised learning
data with decision classes /labels
classification problems
case-control studies
algorithm =. decision trees or rule-based learning
unsupervised
unknown decision classes
looking for patterns in data
hierarchical clusterings
performance or interpretability
performance for things involving life
interpretability for complex coding or data analysis model complex
interpretable ML techniques aim at giving legible answers for predictions
cutoffpermutation value needs to be set to at least…
20! to have significant results
when is undersampling neccesary
when the distribution of classes is unequal
e.g. 20 controles y 5 pacientes
What is the classification accuracy?
what is the expected value?
Accuracy is the power/strenght of our model. We want accuracy over the expected 0.5 because that indicates that the model is correct more often than random chance.
Accuracy = (TP +TN) / (TP + TN + FP + FN). The number of correct predictions divided by total.