matte2 Flashcards

(40 cards)

1
Q

Y(s)=e^(-as)X(s)

A

y(t)=x(t-a)u(t-a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Y(s)=-X’(s)

A

y(t)=t*x(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Y(s)=X(s-a)

A

y(t)=e^(at)x(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

L(delta(t-a))

A

e^(-sa)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

L(u(t-a))

A

e^(-as)/s

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

L(e^-at)

A

1/(s+a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

L(sin(wt))

A

w/(s^2+w^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

L(cos(wt))

A

s/(s^2+w^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

L(f(t))

A

integral(0, uendelig) f(t)*e^-st dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

konvolusjon for laplace

A

Hvis Z(s) = X(s)Y(s) er z(t)=integral(0,t) x(u)y(t-u)du

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

T-periodisk signal x(t) sin fourierrekke (reell)

A

a0/2 + sum(n=1),uendelig)[a_ncos(nwt) + b_nsin(nwt)] hvor w = 2pi/T
a_n = 2/T * integral(-T/2, T/2)[x(t)cos(nwt)]
b_n= 2/T * integral(-T/2, T/2)[x(t)
sin(nwt)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

T-periodisk signal x(t) sin fourrierrekke (kompleks)

A

sum(n=-uendelig, uendelig)[c_ne^(inwt)]
hvor w = pi/T
c_n = 1/T * integral(-1/T, 1/T)[x(t)
e^(-inwt)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

cauchy schwarz ulikhet

A

|<x,y>|<=|x|*|y|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

trekantulikheten

A

|x+y|<=|x|+|y|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

projeksjon x på y

A

<x,y>/|y|^2 * y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

elipseligning

A

(x1-y1)^2/a^2 + (x2-y2)^2/b^2 = 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

stigning i en retning for en todimensjonal funksjon

A

prikk gradient med enhetsvektor i retning du vil.

18
Q

spektralteoremet

A

nxn Symmetriske matriser har n lineært uavhengige egenvektorer. AT = A. Da er A ortogonalt diagonaliserbar

19
Q

ortogonal diagonalisering

20
Q

positivt (semi) definitt

A

x^T A x >= 0 (semi)
x^T A x > 0 helt

21
Q

SVD

A

A = U S V^T
Her er U lik AA^T sin ortonormale egenbasis
S er singulærverdiene, altså røttene til AA^T sine >0 egenverdier
V er A^T A sin ortonormale egenbasis
da kan vi skrive A
A = s1 * u1 v1^T + s2u2*v2^T +…

22
Q

bølgeligningen

A

ü =c^2 u’’

23
Q

varmelikningen

A

u ( tidsderivert) = a * u’’

24
Q

gram schmidt / QR

A

u1 = v1
u2 = v2 - proj(v2,u1)
u3 = v3-proj(v3,u1)-proj(v3,u2)

25
hermitisk matrise
A* = A har reelle egenverdier
26
Unitær matrise
ortonormale kolonner. Q*Q = I = QQ*
27
parsevals sats
hvis vi har en ortonormal vektormengde V er = sum(k=1,n) ck (konjugert) dk
28
parseval for fourier
sum(n=-uendelig, uendelig[|cn|^2] = 1/T * integral(-T/2, T/2)[x(t)^2]
29
fourieromvendingen
x_hat(w) = integral(-uendelig, uendelig) x(t)*e^(-iwt) dt =>x(t) = 1/2pi integral(-uendelig,uendelig) (x_hat(w)* e^(iwt) dw)
30
Fourieromvendt av x derivert
i * w * x_hat
31
fourier(x(t-a))
x(w)*e^(-iwa)
32
fourier(e^(iat)*x(t))
x(w-a)
33
forier(x(at))
x(w/a) / |a|
34
Fourier( x konv y )
x(w) y(w)
35
fourier(delta(x))
1 dette betyr at 1/2pi * integral(e^(ikx)) = delta(x)
36
bevaring av det komplekse indreproduktet under fourier
= 1/2pi *
37
romling frekvens og bølgetall
psi = 1/lambda k = 2pi/lamda
38
f(x) er kontinuerlig i x0 hvis..
det for alle epsilon større enn null finnes en delta større enn null slik at |x0-x| |f(x0)-f(x)|
39
grenseverdien lim(x->x0) f(x) = L finnes hvis..
det for alle epsilon større enn null finnes en delta slik at 0<|x0-x| |f(x)-L|
40