Musculoskeletal and Connective Tissue Flashcards
(111 cards)
What is the pathophysiology of this condition?
Costochondritis, inflammation of the costochondral or costosternal joints, causes localized pain and tenderness. Often, more than one of the seven costochondral joints is affected, especially between the second and fifth costosternal junctions. Repetitive minor trauma or repetitive activities are the likely causes, but bacterial and fungal infections (not likely here given the lack of swelling, erythema) and thoracic surgery may also be implicated.
What is the innervation of the intercostal space?
The intercostal nerves (thoracic spinal and ventral rami) supply general sensory innervation to the skin of the thoracic and anterior abdominal walls. The dermatomes follow a girdle-like distribution. The sensory nerves also supply the parietal pleura and parietal peritoneum. The intercostal nerves also have motor innervation through the ventral rami of T1–T12. Intercostal nerve 1 participates in the brachial plexus; nerves 2–6 innervate the thorax; and nerves 7–12 innervate the anterior abdominal wall.
What conditions, other than costochondritis, should be considered in the differential diagnosis?
Although the localized areas of tenderness suggest a musculoskeletal cause, serious conditions such as myocardial infarction and pericarditis (which has an abnormal echocardiogram, pain changes with position, and frictional rub on auscultation) need to be ruled out. Other considerations include pleuritic pain, which could be a manifestation of pneumonia, pulmonary embolism, pneumothorax, or pleuritis. Pleuritis can be seen in inflammatory conditions such as systemic lupus erythematosus (abnormal serology), fibromyalgia (tender points), and gastroesophageal reflux disorder.
What is the blood supply of the intercostal space?
At each space, there is a posterior artery and anterior set of arteries (Figure 9-1). The bottom nine posterior arteries originate from the descending thoracic aorta, whereas the anterior artery originates from the internal thoracic. The posterior intercostal vein, artery, and nerve run together as a neurovascular bundle along the lower border of each rib. Therefore, during thoracentesis the needle must be inserted just above the lower rib in the intercostal space to avoid injury to the vessels and nerve.
What is the most likely diagnosis?
The patient’s biopsy shows atypical keratinocytes that have invaded the basement membrane; therefore, malignancy is present. Although basal cell carcinoma (BCC) is the most common type of skin cancer, the description of the lesion suggests squamous cell carcinoma (SCC).
Cutaneous SCC is the second most common tumor of the skin. It arises from the malignant proliferation of epidermal keratinocytes. The condition typically presents as a firm, well-demarcated lesion that is scaling, crusting, or ulcerated. Histologic examination is necessary for a diagnosis.
What precursor lesion can lead to cutaneous squamous cell carcinoma (SCC)?
Actinic keratosis (AK), a dysplastic lesion of the epidermis, can lead to SCC. These lesions occur only on sun-exposed skin and consist of hyperkeratotic papules that have a coarse, sandpaper feel; some may present as a “cutaneous horn.”
What risk factors are associated with Cutaneous SCC?
The most important risk factor for SCC is sunlight exposure in which ultraviolet (UV) rays cause DNA damage. Other exogenous factors include ionizing radiation, immunosuppression, chronic inflammation (from burns, scars, or ulcers), and arsenic exposure.
What inherited disorders predispose patients to Cutaneous SCC?
Xeroderma pigmentosum is a rare autosomal recessive disorder that displays a defect in DNA excision repair, which impairs the ability to repair UV-induced DNA damage. Albinism is also associated with SCC because of the generalized pigment loss due to dysfunction and deficiency of melanocytes.
What is the prognosis for patients with cutaneous SCC?
Even though cutaneous SCC can be locally invasive, it rarely metastasizes (1%–5% of cases). Therefore, more than 90% of patients can be cured with local excision.
What retroperitoneal structures of the abdomen could the bullet have hit?
What layers of the lateral and anterior abdominal wall would the bullet have to penetrate to reach the peritoneum?
What is the blood supply to the kidney?
Renal artery → segmental artery → lobar artery → arcuate artery → afferent arteriole → glomerulus → efferent arteriole → vasa recta → segmental vein → renal vein
What is the blood supply to the spleen?
The main blood supply is from the splenic artery, which is a branch of the celiac trunk (the other two branches are the L gastric and common hepatic arteries). The L gastro-omental and short gastric are branches off the splenic artery.
What organs supply the splenic vein?
The splenic vein starts at the hilus of the spleen and receives blood from the stomach, pancreas, and inferior mesenteric vein. The splenic vein joins with the superior mesenteric vein to form the hepatic portal vein.
What are the histologic layers of the skin?
Listed superficially to deep: stratum corneum, lucidum (only in palms and soles), granulosum, spinosum, basale.
What is the most likely diagnosis?
What conditions should be considered in the differential diagnosis?
The young age at clinical presentation along with the tenderness, warmth, and swelling around the mass without systemic signs of infection suggests Ewing sarcoma (Figure 9-2). This diagnosis is supported by the location of the lesion and the histologic appearance (small, round, blue neuroectodermal cells), which are characteristic of this neoplasm.
Other than Ewing sarcoma, what are the other small cell tumors?
Other small cell tumors include neuroblastoma, Wilms tumor, medulloblastoma, and rhabdomyosarcoma.
What is the most likely chromosomal aberration leading to Ewing Sarcoma?
In total, 85% of Ewing sarcoma cases demonstrate a t(11;22) translocation. This translocation leads to an overexpression of the EWSR1 gene (encodes RNA binding proteins) on chromosome 22, which is translocated next to the FLI1 gene on chromosome 11 (encodes transcription factors).
What is the appropriate treatment for Ewing sarcoma?
Ewing sarcoma is known to be a systemic disease due to the high relapse rate (80%–90%) of patients who undergo only local therapy. Therefore, most patients likely have subclinical microscopic metastatic disease at the time of diagnosis, which is treated with chemotherapy.
What percentage of patients have metastatic disease at the time of diagnosis of Ewing sarcoma?
Only 25% of patients have overt metastases at the time of diagnosis.
What is the most likely diagnosis?
The most common causes of lateral hip paining elderly patients include osteoarthritis, bursitis, metastases, and femoral fracture. In this patient, the sudden onset of pain after the fall and inability to walk strongly suggest a fracture of the neck of the femur (Figure 9-3). Femoral neck fractures can be incomplete or complete with no, partial, or total displacement.
What is a potential complication of a Neck of femur fracture?
Fracture of the neck of the femur may disrupt blood supply to the head of the femur. The major arterial supply to the head of the femur is the medial and lateral circumflex femoral arteries (branches of the deep femoral artery) and the artery of the ligament of the head of the femur (branch of the obturator artery). The circumflex arteries may be disrupted by a fracture of the femoral neck, leaving only the artery of the ligament (a branch of the obturator) as a supply. Disruption of the blood supply may cause avascular necrosis of the femoral head.
What bones form the hip joint?
The hip joint consists of the head of the femur articulating with the acetabulum. The acetabulum is formed by the ilium, ischium, and pubis. The fibrocartilaginous rim, the acetabular labrum, attaches to the acetabular margin and deepens the acetabular cup.
Six weeks later, repeat x-ray shows a callus. What does the callus indicate about the patient’s stage of healing?