Number Bases Equations. Flashcards
(90 cards)
Expanded decimal notation:
356.12 =
3x10^2 + 5x10^1 + 6x10^0 + 1x10^-1 + 2x10^-2
Expanded Binary Notation:
101.01 =
1x2^2 + 0x2^1 + 1x2^0 + 0x2^-1 + 1x2^-2
Decimal to Binary:
315 =
100111011
Decimal to Binary:
0.625 =
0.101
Decimal to Binary:
104.15625 =
1101000.00101
Decimal to Binary:
19.1 =
10011.0|0011| repeating bars.
Hexadecimal to Decimal:
E5B.F2 =
Ex16^2 + 5x16^1 + Bx16^0 + Fx16^-1 + 2x16^-2
14x16^2 + 5x16^1 + 11x16^0 + 15x16^-1 + 2x16^-2
Binary to Hexadecimal:
1100101100011101010 =
(Divide this up into groups of four starting on the right, and make a 4-bit binary table)
= 658EA
Binary to Hexadecimal:
101110101101.0001111
= BAD.1E
Hexadecimal to Binary:
3C.A29 =
(Like in Binary to Hexadecimal use the 4-bit binary table)
111100.101000101001
Find the One and Twos complement….?
1110
0001
0010 (Remember to carry the 1)
Find the One and Twos complement…?
11100
00011
00100
Addition of Binary Numbers…?
10011 + 11001
= 101100
Addition of Binary Numbers…?
10111 + 11011
= 110010
Addition of Binary Numbers…?
110111 + 1110
= 1010101
Subtraction of Binary Numbers…?
10110 - 1101
= (See PDFs)
Subtraction of Binary Numbers…?
100101 - 101110
= (See PDFs)
Subtraction of Binary Numbers…?
110 - 110101
= (See PDFs)
Modulo
(Look at tables in book from page 28 to page 29 still learning)
Write an algorithm to convert a decimal number between 0 and 1 to binary…?
first step Input the number 2 3 4 5 6
Draw a structure diagram for an algorithm for converting a decimal number between 0 and 1 to binary…?
(do it)
BEDMAS
12+3x4 =
24
BEDMAS
-2^4 / 8 * 5 =
10
BEDMAS
4 * (-3^2) / (2 * 5^-1) + 6 * (2 * 4^-2) =
90 3/4