Organic chemistry Flashcards

1
Q

structures of methane, ethane, ethene, ethanol, ethanoic acid

A

o 1​ carbon​ ​has​ ​the​ ​prefix​ ​of:​ ​Meth-
o 2​ ​carbons:​ ​Eth-
o 3​ ​carbons:​ ​Prop-
o 4​ ​carbons:​ ​But-
o Remember​ ​the​ ​first​ ​4​ ​prefixes​ ​using​ ​MEPB​ ​Monkeys​ ​Eat​ ​Peanut​ ​Butter
-suffix​ ​of​ ​any​ ​compound​ ​refers​ ​to​ ​the​ ​functional​ ​group
o Alkanes​ ​–ane​ ​(C-C)​ ​e.g.​ ​ethane
o Alkenes​ ​–ene​ ​(C=C)​ ​e.g.​ ​ethene
o Alcohols​ ​–ol​ ​(OH)​ ​e.g.​ ​ethanol
o Carboxylic​ ​acids​ ​–anoic​ ​acid​ ​(-COOH)​ ​e.g.​ ​ethanoic​ ​acid

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure

A
● -Ane​ ​:​ ​alkane
o Functional​ ​group​ ​(same​ ​group​ ​of​ ​atoms​ ​in​ ​each​ ​molecule​ ​that​ ​makes​ ​an alkane)​ ​is​ ​C-H​ ​/​ ​C-C​ ​(NOT​ ​C=C) 
● -Ene​ ​:​ ​alkene
o Functional​ ​group​ ​is​ ​C=C 
● -Ol​ ​:​ ​alcohol
o Functional​ ​group​ ​is​ ​OH 
● -Oic​ ​acid​ ​:​ ​carboxylic​ ​acid
o Functional​ ​group​ ​is​ ​COOH
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms

A

o Alcohol​ ​+​ ​carboxylic​ ​acid​ ​->​ ​ester​ ​+​ ​water
o ​Methanol​ ​+​ ​Ethanoic​ ​acid​ ​->​ ​Methyl​ ​Ethanoate​ ​+​ ​H2O
● How​ ​to​ ​name​ ​esters
o (prefix​ ​of​ ​alcohol​ ​+​ ​yl)​ ​+​ ​(name​ ​of​ ​carboxylic​ ​acid​ ​minus​ ​the​ ​“oic​ ​acid”​ ​+ oate)
o E.g.​ ​Meth-yl​ ​Ethan-oate
● the​ ​alcohol​ ​part​ ​is​ ​to​ ​the​ ​right​ ​normally​ ​with​ ​an​ ​H​ ​from
the​ ​–OH​ ​functional​ ​group​ ​being​ ​lost.
● The​ ​carboxylic​ ​acid​ ​part​ ​is​ ​to​ ​the​ ​left​ ​with​ ​an​ ​OH​ ​from
the​ ​–COOH​ ​functional​ ​group​ ​being​ ​lost
● H​ ​+​ ​OH​ ​→​ ​H​2O​ ​ ​(a​ ​by-product.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

fuels

A

coal, natural gas and petroleum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

methane as the main constituent of natural gas

A
  • methane as the main constituent of natural gas

- methane=​ ​CH4​

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

petroleum

A

Petroleum is a mixture of hydrocarbons

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

properties of molecules within a fraction

A

●The​ ​shorter​ ​the​ ​molecules,​ ​the​ ​lower​ ​the​ ​temperature​ ​at​ ​which​ ​that​ ​fraction evaporates​ ​or​ ​condenses​ ​–​ ​and​ ​the​ ​lower​ ​its​ ​boiling​ ​point.
● Shorter​ ​the​ ​molecules,​ ​the​ ​less​ ​viscous​ ​it​ ​is.​ ​(more​ ​runny)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

uses of the fractions

A

– refinery gas for bottled gas for heating and
cooking
– gasoline fraction for fuel (petrol) in cars
– naphtha fraction for making chemicals
– kerosene/paraffin fraction for jet fuel
– diesel oil/gas oil for fuel in diesel engines
– fuel oil fraction for fuel for ships and home heating systems
– lubricating fraction for lubricants, waxes and polishes
– bitumen for making roads

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Homologous series

A

a ‘family’ of similar compounds with similar chemical properties due to the presence of the same functional group

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

general characteristics of a homologous series

A
  • Same general formula
  • Similar chemical properties
  • Common methods of preparation
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Describe and identify structural isomerism

A
  • Isomers are compounds that have same molecular formula but different structural formula.
  • Properties quite simmilar
  • M.p and B.p differ
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

properties of Alkanes (exemplified by methane)

A

● Generally​ ​unreactive,​ ​except​ ​in​ ​terms​ ​of​ ​burning

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

bonding in alkanes

A
  • Contain single bond

- General formula: Cn H2n +2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

substitution reactions of alkanes with chlorine

A

● Halogen​ ​+​ ​alkane​ ​–(UV)->​ ​halogenoalkane​ ​+​ ​hydrogen​ ​halide oe.g.​​Br2​​​​+​​C2​H​​6​​​​​-(UV)->​​C2​H​​5B​r​​+​​HBr
● Must​ ​be​ ​in​ ​the​ ​presence​ ​of​ ​ultraviolet​ ​radiation​ ​(UV)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

manufacture of alkenes and of hydrogen by cracking

A

● Hydrocarbons​ ​can​ ​be​ ​cracked​ ​to​ ​produce​ ​smaller,​ ​more​ ​useful​ ​molecules.​ ​This process​ ​involved​ ​heating​ ​the​ ​hydrocarbons​ ​to​ ​vaporise​ ​them.
● The​ ​vapours​ ​are:
o Either​ ​passed​ ​over​ ​a​ ​hot​ ​catalyst​ ​(silica​ ​or​ ​alumina)
o Mixed​ ​with​ ​steam​ ​and​ ​heated​ ​to​ ​a​ ​very​ ​high​ ​temperature​ ​(temperature
in​ ​the​ ​range​ ​of​ ​600-700 ̊C)​ ​so​ ​that​ ​thermal​ ​decomposition​ ​reactions​ ​can occur.
● The​ ​products​ ​of​ ​cracking​ ​include​ ​shorter​ ​chain​ ​alkanes​ ​and​ ​alkenes​ ​(or​ ​hydrogen)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

properties of alkenes

A

● Generally:
○ Addition​ ​reactions
○ Involves​ ​the​ ​removal​ ​of​ ​C=C​ ​double​ ​bond
○ C=C​ ​is​ ​very​ ​reactive​ ​and​ ​can​ ​easily​ ​react​ ​to​ ​form​ ​–C-C-
● reaction​ ​​ ​with​ ​bromine:
○ alkene​ ​+​ ​bromine​ ​→​ ​dibromoalkane
○ E.g.​ ​Ethene​ ​+​ ​bromine​ ​→​ ​1,2-dibromoethane
● reaction​ ​with​ ​steam:
○ alkene​ ​+​ ​steam​ ​→​ ​alcohol
○ E.g.​ ​Ethene​ ​+​ ​steam​ ​→​ ​ethanol
● reaction​ ​with​ ​hydrogen:
○ alkene​ ​+​ ​hydrogen​ ​→​ ​alkane
○ E.g.​ ​Ethene​ ​+​ ​hydrogen​ ​→​ ​ethane

17
Q

Distinguish between saturated and unsaturated hydrocarbons:

A

o Unsaturated​ ​=​ ​contain​ ​one​ ​or​ ​more​ ​C=C​ ​double​ ​bonds​ ​e.g.​ ​alkenes
o Saturated​ ​=​ ​contain​ ​no​ ​C=C​ ​double​ ​bonds​ ​e.g.​ ​alkanes

reaction​ ​with​ ​aqueous​ ​bromine:
o Unsaturated​ ​hydrocarbons​ ​react​ ​with​ ​bromine​ ​in​ ​an​ ​addition​ ​reaction, decolourising​ ​it​ ​(​orange​​ ​to​ ​colourless)​ ​–​ ​shown​ ​above​ ​with​ ​the​ ​example of​ ​ethene​ ​reacting​ ​with​ ​bromine
o Saturated​ ​hydrocarbons​ ​do​ ​not​ ​react​ ​with​ ​bromine​ ​and​ ​therefore​ ​the
solution​ ​will​​ ​remain​ ​orange

18
Q

formation of poly(ethene) as an example of addition polymerisation of monomer units

A

● Alkenes​ ​can​ ​be​ ​used​ ​to​ ​make​ ​polymers​ ​such​ ​as​ ​poly(ethene)​ ​by​ ​addition polymerisation.​ ​In​ ​this​ ​reaction,​ ​many​ ​small​ ​molecules​ ​(monomers)​ ​join​ ​together to​ ​create​ ​very​ ​large​ ​molecules​ ​(polymers).

19
Q

manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene

A

● Fermentation:
o The​ ​fermentation​ ​of​ ​glucose
o conditions:​ ​​ ​temperature​ ​of​ ​about​ ​30 ̊C,​ ​anaerobic​ ​conditions​ ​(no​ ​oxygen)
and​ ​using​ ​the​ ​enzymes​ ​in​ ​yeast
o equation:​​ ​glucose​ ​→​ ​ethanol​ ​+​ ​carbon​ ​dioxide
● Steam:
o Reacting​ ​ethene​ ​with​ ​steam
o conditions:​ ​phosphoric​ ​acid​ ​catalyst,​ ​temperature​ ​of​ ​about​ ​300 ̊C​ ​and​ ​a
pressure​ ​of​ ​about​ ​60-70​ ​atm
o equation:​ ​​ethene​ ​+​ ​steam​ ​→​ ​ethanol

20
Q

advantages and disadvantages of these two methods of manufacturing ethanol

A

● Fermentation
o Advantages
▪Renewable​ ​raw​ ​materials, Warm,​ ​normal​ ​pressure​ ​(inexpensive), Little​ ​energy​ ​needed
o Disadvantages
▪ Batch​ ​process​ ​(stop-start), A​ ​lot​ ​of​ ​workers​ ​needed, Slow, Impure​ ​–​ ​needs​ ​treatment
● Steam
o Advantages
▪ Continuous​ ​process​ ​(runs​ ​all​ ​the​ ​time), Few​ ​workers​ ​needed, Fast, Pure
o Disadvantages
▪ Non-renewable​ ​raw​ ​materials, High​ ​temperature​ ​and​ ​pressure​ ​(expensive), A​ ​lot​ ​of​ ​energy​ ​needed

21
Q

properties of ethanol in terms of burning

A

● Burning​ ​in​ ​air​ ​or​ ​oxygen​ ​(complete​ ​combustion) oCH3​C​H2​O​H​​+​​3O​2​​​->​​2CO​2​​​+​​3H2​O​
o Can​ ​be​ ​used​ ​as​ ​a​ ​fuel​ ​in​ ​this​ ​way​ ​(this​ ​reaction​ ​produces​ ​heat​ ​energy) o Burns​ ​in​ ​a​ ​good​ ​supply​ ​of​ ​oxygen

22
Q

Uses of ethanol

A

as a solvent and as a fuel

23
Q

properties of aqueous ethanoic acid

A

● Ethanoic​ ​acid​ ​is​ ​a​ ​member​ ​of​ ​the​ ​carboxylic​ ​acids,​ ​they​ ​have the​ ​functional​ ​group​ ​–COOH.
● First​ ​four​ ​members​ ​are:​ ​methanoic​ ​acid,​ ​ethanoic​ ​acid, propanoic​ ​acid​ ​and​ ​butanoic​ ​acid
-Dissolves in water to produce an acidic solution

24
Q

Formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified Potassium manganate(VII)

A

● Ethanol​ ​reacts​ ​with​ ​oxygen​ ​in​ ​the​ ​air​ ​to​ ​form​ ​ethanoic​ ​acid​ ​(microbial​ ​oxidation)
● Ethanol​ ​reacts​ ​with​ ​acidified​ ​potassium​ ​manganate(VII)​ ​to​ ​form​ ​ethanoic​ ​acid
(under​ ​reflux)

25
Q

ethanoic acid as a typical weak acid

A

● A​ ​typical​ ​weak​ ​acid
● this​ ​means​ ​ethanol​ ​will​ ​release​ ​some​ ​H​+​​ ​ions​ ​in​ ​solution,​ ​but​ ​will​ ​not​ ​fully
dissociate​ ​(loses​ ​the​ ​H​+​​ ​from​ ​the​ ​COOH​ ​group)

26
Q

reaction of a carboxylic acid with an alcohol in the

presence of a catalyst to give an ester

A

-Carboxylic​ ​acids​ ​react​ ​with​ ​alcohols​ ​in​ ​the​ ​presence​ ​of​ ​an​ ​acid​ ​catalyst​ ​to produce​ ​esters
- ​have​ ​the​ ​functional​ ​group​ ​–COO-.
-Name:
o first​ ​part​ ​is​ ​from​ ​alcohol​ ​e.g.​ ​methanol​ ​→​ ​methyl
o second​ ​part​ ​is​ ​from​ ​carboxylic​ ​acid​ ​e.g.​ ​butanoic​ ​acid→​ ​butanoate

27
Q

Polymers

A

large molecules built up from small units (monomers)

28
Q

typical uses of • plastics and of man-made fibres such as nylon and Terylene

A

-Plastics:
o Plastic​ ​bags
o Clingfilm
o Buckets,​ ​other​ ​plastic​ ​tools
-Man-made​ ​fibres​ ​such​ ​as​ ​nylon​ ​and​ ​Terylene:
o Drawn​ ​into​ ​very​ ​fine​ ​fibres​ ​and​ ​woven​ ​into​ ​cloth​ ​for​ ​clothing
o Other​ ​natural​ ​fibres​ ​(e.g.​ ​cotton)​ ​can​ ​be​ ​mixed​ ​with​ ​nylon​ ​or​ ​polyester
fibres​ ​to​ ​make​ ​a​ ​soft​ ​but​ ​hard-wearing​ ​cloth

29
Q

differences between condensation and addition polymerisation

A
  • Addition​ ​polymerisation​ ​involves​ ​the​ ​removal​ ​of​ ​a​ ​C=C​ ​double​ ​bond​ ​to​ ​form​ ​a –C-C-​ ​bond,​ ​i.e.​ ​it​ ​joins​ ​up​ ​unsaturated​ ​molecules​ ​to​ ​form​ ​a​ ​long​ ​saturated molecule
  • Condensation​ ​polymerisation​ ​involves​ ​the​ ​reaction​ ​of​ ​two​ ​different​ ​functional groups​ ​to​ ​form​ ​one​ ​long​ ​molecule​ ​by​ ​the​ ​removal​ ​of​ ​a​ ​small​ ​molecule,​ ​such​ ​as water​ ​H​2O​
  • This​ ​means​ ​that​ ​there​ ​can​ ​be​ ​more​ ​than​ ​one​ ​monomer​ ​used​ ​in condensation​ ​polymerisation​ ​(unlike​ ​addition​ ​which​ ​only​ ​uses​ ​one)
30
Q

formation of nylon (a polyamide) and Terylene (a polyester) by condensation polymerisation

A

31
Q

pollution problems caused by non-biodegradable plastics

A

● Unable​ ​to​ ​biodegrade,​ ​because​ ​the​ ​polymers​ ​that​ ​form​ ​these​ ​plastics​ ​are​ ​inert​ ​/ unable​ ​to​ ​react​ ​therefore,​ ​microorganisms​ ​and​ ​bacteria​ ​are​ ​unable​ ​to​ ​break them​ ​down
o Thus,​ ​the​ ​landfills​ ​are​ ​bad​ ​for​ ​the​ ​environment​ ​as​ ​the​ ​plastics​ ​will​ ​remain in​ ​the​ ​ground,​ ​unable​ ​to​ ​break​ ​down/decompose
● They​ ​produce​ ​toxic​ ​gases​ ​when​ ​they​ ​are​ ​burned
o Carbon​ ​dioxide​ ​is​ ​also​ ​released​ ​–​ ​which​ ​adds​ ​to​ ​global​ ​warming

32
Q

Proteins and carbohydrates

A

constituents of food

33
Q

proteins

A

possessing the same (amide) linkages as nylon but with different units

34
Q

Structure of protein

A

35
Q

hydrolysis of proteins to amino acids.

A

● Hydrolysis​ ​is​ ​the​ ​splitting​ ​up​ ​of​ ​a​ ​molecule​ ​using​ ​water
● Hydrolysis​ ​of​ ​polymers​ ​results​ ​in​ ​the​ ​formation​ ​of​ ​their​ ​monomers
● In​ ​the​ ​case​ ​of​ ​proteins,​ ​when​ ​you​ ​add​ ​water​ ​to​ ​split​ ​up​ ​this​ ​natural​ ​polymer,​ ​you
will​ ​get​ ​amino​ ​acids​ ​(the​ ​monomers​ ​that​ ​form​ ​the​ ​proteins)

36
Q

complex carbohydrates

A

● A​ ​large​ ​number​ ​of​ ​sugar​ ​units​ ​(diols)​ ​joined​ ​together​ ​by​ ​condensation polymerisation,​ ​e.g.​ ​a​ ​polyester​ ​with​ ​–O-​ ​linkages

37
Q

hydrolysis of complex carbohydrates

A

● Acids​ ​or​ ​enzymes​ ​to​ ​give​ ​simple​ ​sugars
● similarly​ ​to​ ​proteins,​ ​complex​ ​carbohydrates​ ​can​ ​be​ ​broken​ ​down​ ​into​ ​their
monomers​ ​(simple​ ​sugars)​ ​using​ ​water​ ​with​ ​acids/enzymes

38
Q

fermentation of simple sugars to produce ethanol (and carbon dioxide).

A

● Produce​ ​ethanol​ ​(and​ ​carbon​ ​dioxide)
● sugar​ ​(glucose)​ ​→​ ​ethanol​ ​+​ ​carbon​ ​dioxide
● conditions:​ ​yeast​ ​enzyme,​ ​around​ ​30°C,​ ​anaerobic​ ​conditions​ ​(no​ ​oxygen)

39
Q

usefulness of chromatography in separating and identifying the products of hydrolysis of carbohydrates and proteins

A

● Chromatography​ ​is​ ​used​ ​to​ ​separate​ ​a​ ​mixture​ ​of​ ​molecules,​ ​therefore​ ​when​ ​you hydrolyse​ ​large​ ​molecules​ ​(polymers)​ ​like​ ​carbohydrates​ ​and​ ​proteins,​ ​you​ ​are left​ ​with​ ​a​ ​mixture​ ​of​ ​their​ ​monomers
o Thus,​ ​chromatography​ ​can​ ​be​ ​used​ ​to​ ​separate​ ​and​ ​identify​ ​these monomers​ ​by​ ​their​ ​Rf​ ​values
o sugars​ ​and​ ​amino​ ​acids​ ​will​ ​not​ ​produce​ ​visible​ ​spots,​ ​so​ ​once​ ​the chromatogram​ ​is​ ​dry,​ ​you​ ​need​ ​to​ ​spray​ ​it​ ​with​ ​a​ ​locating​ ​agent (Ninhydrin​ ​produces​ ​purple​ ​spots​ ​with​ ​amino​ ​acids​ ​and​ ​resorcinol​ ​makes coloured​ ​spots​ ​with​ ​sugars)