P&S Exam 2 Flashcards
(13 cards)
1
Q
Sample Mean
A
Xbar = (X1+β¦+Xn)/n
2
Q
Sample Variance
A
S^2 = 1/n-1* β(Xk-Xbar)^2
3
Q
Bias
A
B(π£^) = E(π£^) - π½
4
Q
Mean Squared Error(MSE)
A
MSE(π£^) = E[(π£^ - π½)^2]
5
Q
Bias-Variance Trade-Off
A
MSE(π£^) = Var(π£^) + B(π£^)^2
6
Q
Consistent Estimator
A
limnββ P(|π£^n - π½|< β) = 1 for β > 0
7
Q
Likelihood Function
A
- For Discrete: βPXi(xi)
- For Continuous: βfXi(xi)
8
Q
Maximum Likelihood Estimate (MLE)
A
- π½^ML
- The value for π½^ that maximizes the likelihood function (Lβ(π½ *) = 0 and Lββ(π½ *) < 0)
9
Q
(1 - πΌ)100% Confidence Interval
A
- [π£^l, π£^h]
- P(π£^l β€ π½ β€ π£^h) β₯ 1- πΌ
10
Q
Pivot Quantity Q
A
- Q is a function of the data given X1,β¦,Xn and the unknown parameter, but doesnβt depend on the unknown parameter..
- The probability distribution of Q also does not depend on the unknown parameter or any other unknown parameter.
11
Q
Methodology for Confidence Interval
A
- Find Pivotal Quantity Q
- Find interval for Q such that P(π£^l β€ Q β€π£^h) = 1 - πΌ
12
Q
Methodology for Hypothesis Testing
A
5 Cs:
1. Create Hypotheses
2. Check Conditions
3. Calculate
4. Compare
5. Concluse
13
Q
HT Comparisons
A
Reject H0 if |W|>zπΌ/2