Pure - Formulas to learn (for mocks) Flashcards
PURE 1 - 3 + Integration rules from P4 (40 cards)
1
Q
Arc length (radians)
A
rθ
2
Q
Sector Area
A
1/2 (r^2θ)
3
Q
equation of a line
A
y - y1 = m(x - x1)
4
Q
sine rule
A
sinA/a = sinB/b = sinC/c (also works with their reciprocals)
5
Q
y = k/x
A
6
Q
y = -k/x
A
7
Q
y = k/x^2
A
8
Q
y = -k/x^2
A
9
Q
periodic sequence
A
10
Q
increasing sequence
A
11
Q
decreasing sequence
A
12
Q
sin double angle formula
A
13
Q
cos double angle formula
A
14
Q
tan double angle formula
A
15
Q
point of inflection
A
when the second derivative = 0
16
Q
product rule if y = u(x)v(x)
A
dy/dx = u’(x)v(x) + u(x)v’(x)
17
Q
chain rule if y= f(g(x))
A
dy/dx = f’(g(x))*g’(x)
18
Q
e^ln(x) = ?
A
x
19
Q
y = e^x , dy/dx = ?
A
e^x
20
Q
y = ln(x) , dy/dx = ?
A
1/x
21
Q
y = e^kx , dy/dx = ?
A
ke^kx (chain rule )
22
Q
integrate 1/x
A
ln(|x|)
23
Q
equation of a circle
A
24
Q
vertical assymptote
A
set denominator = 0
25
horizontal assymptote
26
27
area of a triangle
1/2 (absinC)
28
29
30
31
Complete the Square formula
32
y = a^x
| graph
33
y = a^-x
34
A of a trapezium
where a and b are the parallel sides and h is the perp. height between them
35
area of a circle
36
circle circumference
37
rules for drawing a reciprocal graph
38
a^x (differentiate)
39
if y= ax^n what is the gradient and what is the vertical - intercept
40
if y= ab^x what is the gradient and what is the y - intercept