SDLC Flashcards

1
Q

What is SDLC?

A

SDLC is a process followed for a software project, within a software organization. It consists of a detailed plan describing how to develop, maintain, replace and alter or enhance specific software. The life cycle defines a methodology for improving the quality of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical SDLC:

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What happens in the “Requirement gathering and analysis” phase?

A

Requirement analysis is the most important and fundamental stage in SDLC. It is performed by the senior members of the team with inputs from the customer, the sales department, market surveys and domain experts in the industry. This information is then used to plan the basic project approach and to conduct product feasibility study in the economical, operational and technical areas.

Planning for the quality assurance requirements and identification of the risks associated with the project is also done in the planning stage. The outcome of the technical feasibility study is to define the various technical approaches that can be followed to implement the project successfully with minimum risks.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is a Business Requirements Document (BRD)?

A

A Business Requirements Document (BRD) is a formal contract between the organization and the customer for a product. By describing in full detail all the processes that should be implemented, a BRD is used through the entire cycle of the project to ensure that the product meets the detailed specifications and that the project gains value and achieves the desired results. If it is prepared for a technical product, the BRD also includes technical specifications.

Business Requirement Specification, a document containing all the actual requirement of the end-user from the application. This document is prepared by the Business Development team or the marketing team with the client/end-user approval.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is a software requirements specification (SRS)?

A

A software requirements specification (SRS) is a description of a software system to be developed. It lays out functional and non-functional requirements, and may include a set of use cases that describe user interactions that the software must provide.

Software requirements specification establishes the basis for an agreement between customers and contractors or suppliers (in market-driven projects, these roles may be played by the marketing and development divisions) on what the software product is to do as well as what it is not expected to do. Software requirements specification permits a rigorous assessment of requirements before design can begin and reduces later redesign. It should also provide a realistic basis for estimating product costs, risks, and schedules. Used appropriately, software requirements specifications can help prevent software project failure.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What is the difference between the BRD and SRS?

A

Requirements

  • They outline “what” the software must do
  • They outline “how” the software will be created

Specifications

  • They outline the software from the end-user, business, and stakeholder perspective.
  • They outline the software from the technical team perspective.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What happens in the “design” phase?

A

SRS is the reference for product architects to come out with the best architecture for the product to be developed. Based on the requirements specified in SRS, usually more than one design approach for the product architecture is proposed and documented in a DDS - Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various parameters as risk assessment, product robustness, design modularity, budget and time constraints, the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along with its communication and data flow representation with the external and third party modules (if any). The internal design of all the modules of the proposed architecture should be clearly defined with the minutest of the details in DDS.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What happens in the “development” phase?

A

In this stage of SDLC the actual development starts and the product is built. The programming code is generated as per DDS during this stage. If the design is performed in a detailed and organized manner, code generation can be accomplished without much hassle.

Developers must follow the coding guidelines defined by their organization and programming tools like compilers, interpreters, debuggers, etc. are used to generate the code. Different high level programming languages such as C, C++, Pascal, Java and PHP are used for coding. The programming language is chosen with respect to the type of software being developed.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What happens in the “testing” phase?

A

This stage is usually a subset of all the stages as in the modern SDLC models, the testing activities are mostly involved in all the stages of SDLC. However, this stage refers to the testing only stage of the product where product defects are reported, tracked, fixed and retested, until the product reaches the quality standards defined in the SRS.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What happens in the “deployment and maintenace” phase?

A

Once the product is tested and ready to be deployed it is released formally in the appropriate market. Sometimes product deployment happens in stages as per the business strategy of that organization. The product may first be released in a limited segment and tested in the real business environment (UAT- User acceptance testing).

Then based on the feedback, the product may be released as it is or with suggested enhancements in the targeting market segment. After the product is released in the market, its maintenance is done for the existing customer base.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What are the different SDLC models?

A

There are various software development life cycle models defined and designed which are followed during the software development process. These models are also referred as Software Development Process Models”. Each process model follows a Series of steps unique to its type to ensure success in the process of software development.

Following are the most important and popular SDLC models followed in the industry −

  • Waterfall Model
  • Iterative Model
  • Spiral Model
  • V-Model
  • Big Bang Model

Other related methodologies are Agile Model, RAD Model, Rapid Application Development and Prototyping Models.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What is the basic design of the Waterfall Model?

A

Waterfall approach was first SDLC Model to be used widely in Software Engineering to ensure success of the project. In “The Waterfall” approach, the whole process of software development is divided into separate phases. In this Waterfall model, typically, the outcome of one phase acts as the input for the next phase sequentially.

The sequential phases in Waterfall model are −

Requirement Gathering and analysis − All possible requirements of the system to be developed are captured in this phase and documented in a requirement specification document.

System Design − The requirement specifications from first phase are studied in this phase and the system design is prepared. This system design helps in specifying hardware and system requirements and helps in defining the overall system architecture.

Implementation − With inputs from the system design, the system is first developed in small programs called units, which are integrated in the next phase. Each unit is developed and tested for its functionality, which is referred to as Unit Testing.

Integration and Testing − All the units developed in the implementation phase are integrated into a system after testing of each unit. Post integration the entire system is tested for any faults and failures.

Deployment of system − Once the functional and non-functional testing is done; the product is deployed in the customer environment or released into the market.

Maintenance − There are some issues which come up in the client environment. To fix those issues, patches are released. Also to enhance the product some better versions are released. Maintenance is done to deliver these changes in the customer environment.

All these phases are cascaded to each other in which progress is seen as flowing steadily downwards (like a waterfall) through the phases. The next phase is started only after the defined set of goals are achieved for previous phase and it is signed off, so the name “Waterfall Model”. In this model, phases do not overlap.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

When is it appropriate to use the Waterfall model?

A

Every software developed is different and requires a suitable SDLC approach to be followed based on the internal and external factors. Some situations where the use of Waterfall model is most appropriate are −

  • Requirements are very well documented, clear and fixed.
  • Product definition is stable.
  • Technology is understood and is not dynamic.
  • There are no ambiguous requirements.
  • Ample resources with required expertise are available to support the product.
  • The project is short.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

What are the advantages of using the Waterfall model?

A

The advantages of waterfall development are that it allows for departmentalization and control. A schedule can be set with deadlines for each stage of development and a product can proceed through the development process model phases one by one.

Development moves from concept, through design, implementation, testing, installation, troubleshooting, and ends up at operation and maintenance. Each phase of development proceeds in strict order.

Some of the major advantages of the Waterfall Model are as follows −

  • Simple and easy to understand and use
  • Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review process.
  • Phases are processed and completed one at a time.
  • Works well for smaller projects where requirements are very well understood.
  • Clearly defined stages.
  • Well understood milestones.
  • Easy to arrange tasks.
  • Process and results are well documented.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

What are the disadvantages of using the Waterfall model?

A

The disadvantage of waterfall development is that it does not allow much reflection or revision. Once an application is in the testing stage, it is very difficult to go back and change something that was not well-documented or thought upon in the concept stage.

The major disadvantages of the Waterfall Model are as follows −

  • No working software is produced until late during the life cycle.
  • High amounts of risk and uncertainty.
  • Not a good model for complex and object-oriented projects.
  • Poor model for long and ongoing projects.
  • Not suitable for the projects where requirements are at a moderate to high risk of changing. So, risk and uncertainty is high with this process model.
  • It is difficult to measure progress within stages.
  • Cannot accommodate changing requirements.
  • Adjusting scope during the life cycle can end a project.
  • Integration is done as a “big-bang. at the very end, which doesn’t allow identifying any technological or business bottleneck or challenges early.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is the iterative model?

A

Iterative process starts with a simple implementation of a subset of the software requirements and iteratively enhances the evolving versions until the full system is implemented. At each iteration, design modifications are made and new functional capabilities are added. The basic idea behind this method is to develop a system through repeated cycles (iterative) and in smaller portions at a time (incremental).

Iterative and Incremental development is a combination of both iterative design or iterative method and incremental build model for development. “During software development, more than one iteration of the software development cycle may be in progress at the same time.” This process may be described as an “evolutionary acquisition” or “incremental build” approach.”

In this incremental model, the whole requirement is divided into various builds. During each iteration, the development module goes through the requirements, design, implementation and testing phases. Each subsequent release of the module adds function to the previous release. The process continues till the complete system is ready as per the requirement.

The key to a successful use of an iterative software development lifecycle is rigorous validation of requirements, and verification & testing of each version of the software against those requirements within each cycle of the model. As the software evolves through successive cycles, tests must be repeated and extended to verify each version of the software.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

When is it appropriate to use the Iterative model?

A

Like other SDLC models, Iterative and incremental development has some specific applications in the software industry. This model is most often used in the following scenarios −

  • Requirements of the complete system are clearly defined and understood.
  • Major requirements must be defined; however, some functionalities or requested enhancements may evolve with time.
  • There is a time to the market constraint.
  • A new technology is being used and is being learnt by the development team while working on the project.
  • Resources with needed skill sets are not available and are planned to be used on contract basis for specific iterations.
  • There are some high-risk features and goals which may change in the future.
17
Q

What are the advantages of using the iterative model?

A

The advantages of the Iterative and Incremental SDLC Model are as follows −

  • Some working functionality can be developed quickly and early in the life cycle.
  • Results are obtained early and periodically.
  • Parallel development can be planned.
  • Progress can be measured.
  • Less costly to change the scope/requirements.
  • Testing and debugging during smaller iteration is easy.
  • Risks are identified and resolved during iteration; and each iteration is an easily managed milestone.
  • Easier to manage risk - High risk part is done first.
  • With every increment, operational product is delivered.
  • Issues, challenges and risks identified from each increment can be utilized/applied to the next increment.
  • Risk analysis is better.
  • It supports changing requirements.
  • Initial Operating time is less.
  • Better suited for large and mission-critical projects.
  • During the life cycle, software is produced early which facilitates customer evaluation and feedback.
18
Q

What are the disadvantages of using the Iterative model?

A

The disadvantages of the Iterative and Incremental SDLC Model are as follows −

  • More resources may be required.
  • Although cost of change is lesser, but it is not very suitable for changing requirements.
  • More management attention is required.
  • System architecture or design issues may arise because not all requirements are gathered in the beginning of the entire life cycle.
  • Defining increments may require definition of the complete system.
  • Not suitable for smaller projects.
  • Management complexity is more.
  • End of project may not be known which is a risk.
  • Highly skilled resources are required for risk analysis.
  • Projects progress is highly dependent upon the risk analysis phase.
19
Q

What is the Spiral model?

A

The spiral model combines the idea of iterative development with the systematic, controlled aspects of the waterfall model. This Spiral model is a combination of iterative development process model and sequential linear development model i.e. the waterfall model with a very high emphasis on risk analysis. It allows incremental releases of the product or incremental refinement through each iteration around the spiral.

The spiral model has four phases. A software project repeatedly passes through these phases in iterations called Spirals.

Identification

This phase starts with gathering the business requirements in the baseline spiral. In the subsequent spirals as the product matures, identification of system requirements, subsystem requirements and unit requirements are all done in this phase.

This phase also includes understanding the system requirements by continuous communication between the customer and the system analyst. At the end of the spiral, the product is deployed in the identified market.

Design

The Design phase starts with the conceptual design in the baseline spiral and involves architectural design, logical design of modules, physical product design and the final design in the subsequent spirals.

Construct or Build

The Construct phase refers to production of the actual software product at every spiral. In the baseline spiral, when the product is just thought of and the design is being developed a POC (Proof of Concept) is developed in this phase to get customer feedback.

Then in the subsequent spirals with higher clarity on requirements and design details a working model of the software called build is produced with a version number. These builds are sent to the customer for feedback.

Evaluation and Risk Analysis

Risk Analysis includes identifying, estimating and monitoring the technical feasibility and management risks, such as schedule slippage and cost overrun. After testing the build, at the end of first iteration, the customer evaluates the software and provides feedback.

Based on the customer evaluation, the software development process enters the next iteration and subsequently follows the linear approach to implement the feedback suggested by the customer. The process of iterations along the spiral continues throughout the life of the software.

20
Q

When is it appropriate to use the spiral model?

A

The Spiral Model is widely used in the software industry as it is in sync with the natural development process of any product, i.e. learning with maturity which involves minimum risk for the customer as well as the development firms.

The following pointers explain the typical uses of a Spiral Model −

  • When there is a budget constraint and risk evaluation is important.
  • For medium to high-risk projects.
  • Long-term project commitment because of potential changes to economic priorities as the requirements change with time.
  • Customer is not sure of their requirements which is usually the case.
  • Requirements are complex and need evaluation to get clarity.
  • New product line which should be released in phases to get enough customer feedback.
  • Significant changes are expected in the product during the development cycle.
21
Q

What are the advantages of using the Spiral model?

A

The advantages of the Spiral SDLC Model are as follows −

  • Changing requirements can be accommodated.
  • Allows extensive use of prototypes.
  • Requirements can be captured more accurately.
  • Users see the system early.
  • Development can be divided into smaller parts and the risky parts can be developed earlier which helps in better risk management.
22
Q

What are the disadvantages of using the spiral model?

A

The disadvantages of the Spiral SDLC Model are as follows −

  • Management is more complex.
  • End of the project may not be known early.
  • Not suitable for small or low risk projects and could be expensive for small projects.
  • Process is complex
  • Spiral may go on indefinitely.
  • Large number of intermediate stages requires excessive documentation.
23
Q

What is the V-model?

A

The V-model is an SDLC model where execution of processes happens in a sequential manner in a V-shape. It is also known as Verification and Validation model.

The V-Model is an extension of the waterfall model and is based on the association of a testing phase for each corresponding development stage. This means that for every single phase in the development cycle, there is a directly associated testing phase. This is a highly-disciplined model and the next phase starts only after completion of the previous phase.

24
Q

What are the verification phases of the V-model?

A

Business Requirement Analysis

This is the first phase in the development cycle where the product requirements are understood from the customer’s perspective. This phase involves detailed communication with the customer to understand his expectations and exact requirement. This is a very important activity and needs to be managed well, as most of the customers are not sure about what exactly they need. The acceptance test design planning is done at this stage as business requirements can be used as an input for acceptance testing.

System Design

Once you have the clear and detailed product requirements, it is time to design the complete system. The system design will have the understanding and detailing the complete hardware and communication setup for the product under development. The system test plan is developed based on the system design. Doing this at an earlier stage leaves more time for the actual test execution later.

Architectural Design

Architectural specifications are understood and designed in this phase. Usually more than one technical approach is proposed and based on the technical and financial feasibility the final decision is taken. The system design is broken down further into modules taking up different functionality. This is also referred to as High Level Design (HLD).

The data transfer and communication between the internal modules and with the outside world (other systems) is clearly understood and defined in this stage. With this information, integration tests can be designed and documented during this stage.

Module Design

In this phase, the detailed internal design for all the system modules is specified, referred to as Low Level Design (LLD). It is important that the design is compatible with the other modules in the system architecture and the other external systems. The unit tests are an essential part of any development process and helps eliminate the maximum faults and errors at a very early stage. These unit tests can be designed at this stage based on the internal module designs.

25
Q

What is the coding phase of the V-model?

A

The actual coding of the system modules designed in the design phase is taken up in the Coding phase. The best suitable programming language is decided based on the system and architectural requirements.

The coding is performed based on the coding guidelines and standards. The code goes through numerous code reviews and is optimized for best performance before the final build is checked into the repository.

26
Q

What are the validation phases of the V-model?

A

Unit Testing

Unit tests designed in the module design phase are executed on the code during this validation phase. Unit testing is the testing at code level and helps eliminate bugs at an early stage, though all defects cannot be uncovered by unit testing.

Integration Testing

Integration testing is associated with the architectural design phase. Integration tests are performed to test the coexistence and communication of the internal modules within the system.

System Testing

System testing is directly associated with the system design phase. System tests check the entire system functionality and the communication of the system under development with external systems. Most of the software and hardware compatibility issues can be uncovered during this system test execution.

Acceptance Testing

Acceptance testing is associated with the business requirement analysis phase and involves testing the product in user environment. Acceptance tests uncover the compatibility issues with the other systems available in the user environment. It also discovers the non-functional issues such as load and performance defects in the actual user environment.

27
Q

When is it appropriate to use the V-model?

A

V- Model application is almost the same as the waterfall model, as both the models are of sequential type. Requirements have to be very clear before the project starts, because it is usually expensive to go back and make changes. This model is used in the medical development field, as it is strictly a disciplined domain.

The following pointers are some of the most suitable scenarios to use the V-Model application.

  • Requirements are well defined, clearly documented and fixed.
  • Product definition is stable.
  • Technology is not dynamic and is well understood by the project team.
  • There are no ambiguous or undefined requirements.
  • The project is short.
28
Q

What are the advantages of using the V-model?

A

The advantages of the V-Model method are as follows −

  • This is a highly-disciplined model and Phases are completed one at a time.
  • Works well for smaller projects where requirements are very well understood.
  • Simple and easy to understand and use.
  • Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review process.
29
Q

What are the disadvantages of using the V-model?

A

The disadvantages of the V-Model method are as follows −

  • High risk and uncertainty.
  • Not a good model for complex and object-oriented projects.
  • Poor model for long and ongoing projects.
  • Not suitable for the projects where requirements are at a moderate to high risk of changing.
  • Once an application is in the testing stage, it is difficult to go back and change a functionality.
  • No working software is produced until late during the life cycle.
30
Q

What is the Agile model?

A

Agile model believes that every project needs to be handled differently and the existing methods need to be tailored to best suit the project requirements. In Agile, the tasks are divided to time boxes (small time frames) to deliver specific features for a release.

Iterative approach is taken and working software build is delivered after each iteration. Each build is incremental in terms of features; the final build holds all the features required by the customer.

Following are the Agile Manifesto principles −

  • Individuals and interactions − In Agile development, self-organization and motivation are important, as are interactions like co-location and pair programming.
  • Working software − Demo working software is considered the best means of communication with the customers to understand their requirements, instead of just depending on documentation.
  • Customer collaboration − As the requirements cannot be gathered completely in the beginning of the project due to various factors, continuous customer interaction is very important to get proper product requirements.
  • Responding to change − Agile Development is focused on quick responses to change and continuous development.
31
Q

Describe Agile vs Traditional SDLC models

A

Agile is based on the adaptive software development methods, whereas the traditional SDLC models like the waterfall model is based on a predictive approach. Predictive teams in the traditional SDLC models usually work with detailed planning and have a complete forecast of the exact tasks and features to be delivered in the next few months or during the product life cycle.

Predictive methods entirely depend on the requirement analysis and planning done in the beginning of cycle. Any changes to be incorporated go through a strict change control management and prioritization.

Agile uses an adaptive approach where there is no detailed planning and there is clarity on future tasks only in respect of what features need to be developed. There is feature driven development and the team adapts to the changing product requirements dynamically. The product is tested very frequently, through the release iterations, minimizing the risk of any major failures in future.

Customer Interaction is the backbone of this Agile methodology, and open communication with minimum documentation are the typical features of Agile development environment. The agile teams work in close collaboration with each other and are most often located in the same geographical location.

32
Q

What are the advantages of using the Agile model?

A

The advantages of the Agile Model are as follows −

  • Is a very realistic approach to software development.
  • Promotes teamwork and cross training.
  • Functionality can be developed rapidly and demonstrated.
  • Resource requirements are minimum.
  • Suitable for fixed or changing requirements
  • Delivers early partial working solutions.
  • Good model for environments that change steadily.
  • Minimal rules, documentation easily employed.
  • Enables concurrent development and delivery within an overall planned context.
  • Little or no planning required.
  • Easy to manage.
  • Gives flexibility to developers.
33
Q

What are the disadvantages of using the Agile model?

A

The disadvantages of the Agile Model are as follows −

  • Not suitable for handling complex dependencies.
  • More risk of sustainability, maintainability and extensibility.
  • An overall plan, an agile leader and agile PM practice is a must without which it will not work.
  • Strict delivery management dictates the scope, functionality to be delivered, and adjustments to meet the deadlines.
  • Depends heavily on customer interaction, so if customer is not clear, team can be driven in the wrong direction.
  • There is a very high individual dependency, since there is minimum documentation generated.
  • Transfer of technology to new team members may be quite challenging due to lack of documentation.