Termodinámica Flashcards

(77 cards)

1
Q

Los diferenciales de calor y trabajo son de tipo…

A

INEXACTAS (quita puntos)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

F normal form

name

A

Energía de Helmholtz

F=U-TS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

dvpF/dV

dvpF/dT

A

On the square, go up to the denominator and to the other corner.
dºF/dV = -p
dºF/dT = -S

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

(dvpF/dT)^2

A
dºF/dT = -S
(dºF/dT)^2 = -(dºS/dT) = -Cv/T  (V cte)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

(dvpF/dV)^2

A
dºF/dV = -P
(dºF/dV)^2 = -(dºP/dV) = 1/(kt V)  (T cte)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

kt

name

A

Compresibilidad
-1/V (dºV/ dP)(T)
where º means partial derivative and (T) means T=cte

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

α

name

A

Dilatación térmica

α = 1/V (dºV/ dT)(P) = Pβκt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

dV/V ito coeffs

A

αdT-ktdP

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

β

name

A

Piezotérmico

1/P dºP/dT

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

ks

A

Es como kt pero con P y a S cte

= -1/V (dºV/dP)(S)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

H normal form

A

H=U+PV

Hitler got a paid visit

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

(dºH/dS)^2

What is cte?

A

P=cte
Since the first derivative wrt S is T, and TdS=CpdT
so
dºT/dS=T/Cp

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

(dºH/dP)^2

What is cte?

A

S is cte
Since the first dº is V,
dºV/dP = -ksV

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Potencial químico

A

μ = (dºF/dn)

where n is moles

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

G normal form

A

G=F+PV=U-TS+PV=H-TS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

(dºG/dP)^2

What is cte?

A

The first dº is V

then the second’s = -ktV

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

(dºG/dT)^2

What is cte?

A

The first dº is S

then the second’s = -Cp/T

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

When finding diffs using Born, always…

A

add +μdN at the end

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

U normal form

A

U=TS-PV

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

When do you use μ?

A

Sistemas abiertos

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Negative signs for condiciones de Schwartz

A

The only things with negative OUTCOMES are
TV
and
StriPpers

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Trabajos ito in(ex)tensivas

A

intensiva . diff(extensiva)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

1a ecuación de Gibbs-Helmholtz

A

ΔU/T^2 = -dº/dT(ΔF/T)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

2a ecuación de Gibbs-Helmholtz

A

ΔH/T^2 = -dº/dT(ΔG/T)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Relación F y variables clásicas
El cambio de F es W
26
W máximo a T=cte
The maximum work obtainable from a system where there is not change in temperature is the change in the Helmholtz potential.
27
Calor isobárica ito potenciales
The enthalpy of a reversible isobaric process is the heat involved in the process. This also occurs in chemical reactions under constant external pressure.
28
Trick for Schwartz conditions with differentials
Let N=normal f=differential (dºN/df)(f of N)
29
Trick for getting α and κt
V(P,T) dV = (dºV/dP)(T)dp + (dºV/dT)(P)dT Divide everything by V Then the first term is -kt and the second's α
30
Van der Waals equation
(p+an^2/v^2)(V-nb)=nRT
31
If given a coeff...
Write down the definition, might help later
32
Entropía
S=Q/T | dS=dQ/T
33
Work
pdV
34
Relación entre incremento de energía libre y trabajo
El incremento de energía libre y el trabajo máximo son iguales y opuestos.
35
dS para gases ideales ito C if P cte V cte
dS=nCv(dT/T)+nR(dV/V) | dS=nCp(dT/T)-nR(dP/P)
36
"Ecuación fundamental" entropía
dS = (1/T)dU + (p/T)dV = nCv(dT/T)+nR(dV/V)
37
¿Qué hacer si necesitas calcular la entropía pero no puedes conocer su valor inicial?
Si no conozco el origen de la entropía pero necesito calcularla, utilizar un valor referencial de origen S1. Así, la integral es S = S1 + etc
38
Interpretación de un diferencial con dos términos
Se puede interpretar un diferencial con dos términos como un proceso realizado en dos pasos. En un paso, se mantiene cte la variable del diferencial del otro paso. P.e.: F=-SdT-pdV se hace en un paso a V cte seguido de otro a T cte
39
When given variables = numbers, what do first?
Always get all numerical values out of the way FIRST
40
Possible uses for a given coeff. in enunciado
IT may be used in an integral, but | Sometimes, a coeff is given just so you can find a missing thermo var. (say V2). Then use that in an integral.
41
Trick for the definition of β
Expand dV(T,P), divide by V. The first term is β and the second -kt
42
Sign of work done on system
Positive
43
Ecuaciones Poisson
PV^γ TV^γ-1 TP^1-1/γ
44
γ adiabático
Cp/Cv
45
Relación de Mayer
Cp-Cv=R
46
Formula with Cv ito S
TdS=CvdT if V=cte! This comes from the fundamental eq. for S
47
Cv monoatómico | diat
3/2 and 5/2. Cp is always Cv+1
48
γ mono
5/3
49
Trabajo isócoro | W isóbaro
W=0 | Pext=cte
50
W si expansión libre
Es contra el vacío, Pext=0 y W=0
51
Primer principio forma diff
dU = d!Q + d!W | where ! means inexact diff.
52
Incremento de energía interna a V cte | A T cte
ΔU=nCvΔT | cero
53
H electrica | H magnética
He=U-EPV | Hm=U-μoHMV
54
Ecuación de Clapeyron
dp/dT=L/TΔv=Δh/TΔv | donde L es el calor latente molar de cambio de fase
55
Aproximación de Clausius-Clapeyron
dlnp/dT=Δh/RT^2 | solo cuando una de las fases es gaseosa, y donde p es la presión de vapor de la fase condensada correspondiente
56
1 cal in SI
4,184J
57
Other R. Units.
R'=0,082 [atm.L/mol K]
58
Calor latente
E necesaria para cdf
59
Incremento de entalpía libre = 0 cuando
Δg=0 cuando estamos en equilibrio de fases, o sea, el punto de transición
60
Ecuación puente
(dºU/dV)(T)=T(dºp/dT)-p
61
Punto triple. Deducción matemática.
El punto triple es donde confluyen las líneas de fusión, vap. y sublimación. Igualando las condiciones para dos de estas fases, y despejando una variable (p.e. T), se deduce que esa misma es la T para la fase restante.
62
How to know whether a reaction is stable based on potentials
We can know whether one side of a transition is stable by calculating a potential when the reaction happens one way (say left to right) and deciding whether it's what it should be: a min (max).
63
Mins and Max for all potentials
At eq.: S max (dº^2) U min F min G min
64
Límites C(p,v) cuando T->0
0
65
Límites 3er principio
limT->0[dºs/dv](T)=0 limT->0[dºs/dP](T)=0 Can be paired with maxwell relations for cash money limT->0[dºs/dP](T)=inf means no se puede usar una ecuación de estado dada en el límite inferior de temperaturas.
66
Relación Q y H
Q=mΔhv | that's entalpía de vap.
67
Rendimiento máquina térmica
η=W/Q1=1+Q2/Q1=1-T2/T1 | IMPORTANT: es trabajo realizado/ calor ABSORBIDO
68
Eficiencia máquina
E=1/η
69
Rendimiento Carnot
η=1-TL/TH=1-QL /QH | where T1 is hot
70
Relación Q y C
dQ=mcdT c es el calor esp. de la sustancia add a negative sign if it's cooling
71
If given some eq. of state, how can you get the coeffs.?
You must EXPAND the derivada total dV and replace the definitions based on what you get from the partial derivatives. Likewise, equations of state are obtained from coeffs by using the full dV expansion, say (two terms).
72
Condiciones máquina reversible:
dW=dQ+dQo dQ/T+dQo/To=0 where dQ is heat taken from substance and dQo heat released into the ENVIRONMENT dawg. if you know dQ ito c, you can replace that in second formula (& then 1st formula) for quick CASH $$$
73
Sign of heat taken from system
Negative
74
ΔS en ciclo reversible
0
75
β en gas ideal
En gas ideal, β=T^-1
76
Rendimiento frigorífico
η=|QL/W|
77
alfa can also be written as
Pβκt