Test 1 Review Flashcards
(50 cards)
Which Law of Logical Equivalency?
¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q
De Morgan’s Laws
State the Identity Laws
p ∧ T ≡ p
p ∨ F ≡ p
What is the order of operations when simplifying complex logical expressions?
Operators:
¬ “not
∨ “or”
➜ “implies”
↔ “if and only if”
∧: “and”
- ¬ “not
- ∧: “and”
- ∨ “or”
- ➜ “implies”
- ↔ “if and only if”
Which Law of Logical Equivalency?
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Associative Laws
State the Logical Equivalences for Each Biconditional Statement
p ↔ q ≡
p ↔ q ≡
p ↔ q ≡
¬( p ↔ q ) ≡
p ↔ q ≡ ( p ➜ q ) ∧ (q ➜ p )
p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ ( p ∧ q ) ∨ (¬p ∧ ¬q)
¬( p ↔ q ) ≡ p ↔ ¬q
State the Idempotent Laws
p ∨ p ≡ p
p ∧ p ≡ p
List 8 common ways to express conditionals in English, p ➜ q, where p is the hypothesis and q is the conclusion.
- if p, then q
- q if p
- q follow from p
- p implies q
- q is necessary for p
- p is sufficient for q
- p only if q
- q unless ¬p
State the Double Negation Law
¬(¬p) ≡ p
State the Converse of “If I study, then I get an A on my exam.”
Converse: if q, then p
q ➜ p
If I get an A on my exam, I studied.
Which Law of Logical Equivalency?
p ∨ ¬p ≡ T
p ∧ ¬p ≡ F
Negation Laws
Which Law of Logical Equivalency?
p ∧ T ≡ p
p ∨ F ≡ p
Identity Laws
State the Converse, Inverse, Contrapostive, and Biconditional of if p, then q.
p ➜ q
Converse: if q, then p
q ➜ p
Inverse: if not p, then not q
¬p ➜ ¬q
Contrapositive: if not q, then not p
¬q ➜ ¬p
Biconditional: p if and only if q
p ↔ q
State the Associative Laws
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
State the Commutative Laws
p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p
State the De Morgan’s Laws
¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q
State the Absorption Laws
p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
Which Law of Logical Equivalency?
p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p
Commutative Laws
State the Logical Equivalences for Each Conditional Statement
p ➜ q ≡
p ➜ q ≡
p ∨ q ≡
p ∧ q ≡
¬( p ➜ q ) ≡
( p ➜ q ) ∧ (p ➜ r ) ≡
( p ➜ r ) ∧ (q ➜ r ) ≡
( p ➜ q ) ∨ (p ➜ r ) ≡
( p ➜ r ) ∨ (q ➜ r ) ≡
p ➜ q ≡ ¬p ∨ q
p ➜ q ≡ ¬q ➜ ¬p
p ∨ q ≡ ¬p ➜ q
p ∧ q ≡ ¬(p ➜ ¬q)
¬( p ➜ q ) ≡ p ∧ ¬q
( p ➜ q ) ∧ (p ➜ r ) ≡ p ➜ ( q ∧ r )
( p ➜ r ) ∧ (q ➜ r ) ≡ ( p ∨ q ) ➜ r
( p ➜ q ) ∨ (p ➜ r ) ≡ p ➜ ( q ∨ r )
( p ➜ r ) ∨ (q ➜ r ) ≡ ( p ∧ q ) ➜ r
State the Negation Laws
¬p ∨ ¬p ≡ T
p ∧ ¬p ≡ F
State the Domination Laws
p ∨ T ≡ T
p ∧ F ≡ F
Which Law of Logical Equivalency?
p ∨ T ≡ T
p ∧ F ≡ F
Domination Laws
Which Law of Logical Equivalency?
p ∨ p ≡ p
p ∧ p ≡ p
Idempotent Laws
Which Law of Logical Equivalency?
p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
Absorption Laws
Which Law of Logical Equivalency?
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Distributive Laws