TEST 1 REVIEW Flashcards
(24 cards)
Pythagorean Identity: Ways to write sin^2(x)+cos^2(x)=1
- sin^2(x)=1-cos^2(x)
- cos^2(x)=1-sin^2(x)
Pythagorean Identity: Ways to write tan^2(x)+1=sec^2(x)
- sec^2(x)-1=tan^2(x)
Pythagorean Identity: Ways to write 1+cot^2(x)=csc^2(x)
- cot^2(x)=csc^2(x)-1
Double Angle Identity: sin(2x)=
- 2sinxcosx
Double Angle Identity: sinxcosx=
1/2 (sin(2x))
Double Angle Identity: cos(2x)=
- 1-2sin^2(x)
- 2cos^2(x)-1
Double Angle Identity: sin^2(x)=
1/2 (1-cos(2x))
Double Angle Identity: cos^2(x)
1/2 (1+cos(2x))
Integral x^n=
Power Rule !!! x^n+1/n+1 + c
Integral 1/x=
ln|x|+ c
Integral e^x=
Guess what ! e^x + c
Integral b^x
(b^x)/(ln(b)) + c
Integral sinx
-cosx + c
Integral sec^2(x)
tanx + c
Integral secxtanx
secx + c
Integral secx
ln|secx+tanx| + c
Integral tanx
ln|secx|+ c
Integral 1/(x^2 + 1)
arctanx + c
Unit Circle Cos
1,0,-1,0
Integral cos^2x
x/2 +sin(2x)/4
TRIG SUB radical x^2-a^2
a at the bottom
x as a hypotenuse
radical as a leg
x= a sec theta
TRIG SUB x^2+a^2
a is bottom
radical is hypotenuse
x is leg
x = tan theta
TRIG SUB a^2-x^2
radical is bottom
a is hypotenuse
x is leg
Integral cos dx
sinx+c