Test 4 Study Flashcards
(32 cards)
what is QE?
rule to swap quantifiers.
(∀x)¬(Px ∧ ¬Mx)
———————————-
¬(∃x)(Px ∧ ¬Mx) QE
what is UI?
rule to remove universal quantifier
(∀x)(Rx –> Bx) can be replaced with (Rm –> Bm)
what is EI?
rule to remove existential quantifier
(∃x)(Rx –> Bx) can be replaced with (Rm –> Bm)
has to be a new constant
what is UG?
rule to introduce universal quantifier
(Wm –> Bm) to (x)(Wx –> Bx)
what is EG?
rule to introduce existential quantifier
(∃x)
fill in blank
¬(P ∧ Q)
_______________________
DeM
¬P ∨ ¬Q
fill in blank
P –> Q
P
___________________________
MP
Q
fill in blank
P –> Q
¬Q
____________________________
MT
¬P
fill in blank
P –> Q
Q –> R
———————————
CA
P –> R
fill in blank
P ∨ Q
¬P
——————————–
DA
Q
fill in blank
P ∧ Q
———————————–
Simp
P
fill in blank
P
Q
———————————
Conj
P ∧ Q
fill in blank
P
———————————-
Add
P ∨ Q
fill in blank
P –> Q
——————————
Imp
¬P ∨ Q
fill in blank
P –> Q
——————————-
Contra
¬Q –> ¬P
T / F : There are unbound variables in this expression: (Ab ∨ (Ba ∧ (∃x)Cx)
False
T / F : This is a formula but not a WFF of PL: (∀x)(Rx → (∃x)Mx).
False. It’s not a formula.
T / F : This is a correct application of the rule Conj: 7. (∀x)Rx ∧ (∃x)Mx Conj 5,6.
True
T / F : This is a tautology: (∀x)(Bx → (Ax ∨ ¬Ax)).
True
T / F : Any argument with contrary premises is valid.
True
Which rule of PD adds an existential quantifier?
EG
Apply QE to the following sentence. (∃x)¬(Px ∨ ¬Mx)
¬(∀x)(Px ∨ ¬Mx)
Apply DeM to the following sentence. ¬(∀x)¬(Px ∨ ¬Mx)
¬(∀x)(¬Px ∧ Mx)
Give proper rule abbreviations for 3 of the 5 new rules of PD.
QE, UI, UG, EI, EG