TOPOLOGIES Flashcards

UNE FICHES DE REVISION POUR MON EXAMEN ET ME PROPOSER DES EXO DE LA MOIN COMPLEXES E LA PLUS DIFFICILE (176 cards)

1
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Qu’est-ce qu’une distance sur un ensemble E?

A

Une application d : E × E → R+ vérifiant :
* d(x, y) = 0 ⇐⇒ x = y
* d(x, y) = d(y, x) (symétrie)
* d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire)

Ces conditions sont essentielles pour définir une distance.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Comment définit-on un espace métrique?

A

Un ensemble E muni d’une distance d.

Cela implique que les éléments de E peuvent être mesurés par la distance d.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Quel est un exemple de distance usuelle sur R?

A

d(x, y) = |x - y|.

Cette distance est communément utilisée dans l’analyse réelle.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Quelle est la définition de la distance discrète?

A

d(x, y) =
* 1 si x ≠ y
* 0 si x = y.

Cette distance ne mesure que si les points sont égaux ou non.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Qu’est-ce qu’une distance équivalente?

A

Deux distances d1 et d2 sur un ensemble E sont équivalentes s’il existe α, β ∈ R*+ tels que
* αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y).

Cela signifie que les deux distances mesurent des concepts similaires de proximité.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Qu’est-ce qu’un sous-espace métrique?

A

Une partie non vide F d’un espace métrique (E, d) avec la restriction dF = d|F × F.

Le sous-espace hérite de la structure métrique de l’espace E.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Comment définit-on une boule ouverte dans un espace métrique?

A

B(a, r) = {x ∈ E / d(a, x) < r}.

Cela représente tous les points x qui sont à une distance inférieure à r du point a.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Quelle est la définition d’une boule fermée?

A

Bf(a, r) = {x ∈ E / d(a, x) ≤ r}.

Cette définition inclut le point a et tous les points à une distance r ou moins.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Qu’est-ce qu’une sphère dans un espace métrique?

A

S(a, r) = {x ∈ E / d(a, x) = r}.

La sphère contient tous les points qui sont exactement à une distance r du point a.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Comment définit-on le diamètre d’une partie A d’un espace métrique?

A

δ(A) = sup {d(x, y) / (x, y) ∈ A × A}.

Le diamètre mesure la plus grande distance entre deux points dans A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Quand dit-on qu’une partie A est bornée?

A

Si δ(A) est fini.

Cela signifie qu’il existe une distance maximale entre les points de A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Qu’est-ce qu’une application bornée?

A

Une application f : X → E est bornée si f(X) est une partie bornée de (E, d).

Cela signifie que les images de tous les éléments de X dans E ne s’étendent pas à l’infini.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Quelle est la distance de convergence uniforme entre deux applications f et g?

A

d∞(f, g) = sup {d(f(x), g(x)) / x ∈ X}.

Cette distance mesure la plus grande différence entre les valeurs des deux fonctions sur l’ensemble X.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is the distance d∞ on Fb(X, E)?

A

d∞(f, g) = sup d(f(x), g(x)) for x ∈ X

This distance is called the distance of uniform convergence.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What defines an open set O in a metric space (E, d)?

A

For every a ∈ O, there exists a ball B(a, r) contained in O for some r > 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

What is the definition of a closed set F in a metric space (E, d)?

A

The complement of F in E is an open set in (E, d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

What are the open sets in a metric space?

A

E and ∅ are open sets in (E, d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

What is the proposition regarding open balls in a metric space?

A

Every open ball B(a, r) in (E, d) is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Fill in the blank: The complement of a closed ball Bf(a, r) is an ______.

A

open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

What is the relationship between open intervals and open sets in R?

A

Every open interval in R is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

What is the relationship between closed intervals and closed sets in R?

A

Every closed interval in R is a closed set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

True or False: The negation of ‘A is an open set’ is ‘A is a closed set’.

A

False

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Provide an example of a set that is neither open nor closed in R.

A

A = [0, 1[ is neither open nor closed

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
What is the proposition about the union of open sets?
The union of any family of open sets is an open set
26
What is the corollary regarding spheres in a metric space?
The sphere S(a, r) is a closed set in (E, d)
27
What is true about the intersection of a finite number of open sets?
The intersection of a finite number of open sets is an open set
28
What is the proposition regarding closed sets?
The intersection of any family of closed sets is a closed set
29
What are the three fundamental properties of open sets in a metric space?
* E and ∅ are open sets * Any union of open sets is an open set * Any finite intersection of open sets is an open set
30
Define a topology T on a set E.
T is a family of subsets of E satisfying: E and ∅ are in T, any union of elements of T is in T, and any finite intersection of elements of T is in T
31
What is an example of a discrete topology?
T = (E) is the discrete topology on E
32
What is a neighborhood of a point a in a metric space?
A set V is a neighborhood of a if there exists r > 0 such that B(a, r) ⊂ V
33
What is the relationship between neighborhoods and open sets?
Every open set containing a is a neighborhood of a
34
What properties do neighborhoods of a point a have?
* Every neighborhood of a contains a * If V ⊂ W and V is a neighborhood of a, then W is also a neighborhood of a * A finite intersection of neighborhoods of a is a neighborhood of a
35
What does it mean for a metric space to be separated?
For distinct points a and b, there exist neighborhoods V of a and W of b such that V ∩ W = ∅
36
What is the definition of a neighborhood of a point a in a metric space?
A neighborhood of a point a is a set B(a, r) for some r > 0.
37
If W is a neighborhood of a point a, what can be concluded?
B(a, r) ⊆ W.
38
What can be said about a finite number of neighborhoods V1, ..., Vn of a point a?
There exists ri > 0 such that B(a, ri) ⊆ Vi for all i = 1, ..., n.
39
What is the relationship between r and ri when defining a neighborhood of a point a?
r = min(ri) > 0.
40
What is the conclusion about the neighborhoods V1, ..., Vn?
B(a, r) ⊆ ∩_{i=1}^n Vi.
41
What is the proposition regarding a subset O of a metric space?
O is open if and only if it is a neighborhood of each of its points.
42
What does it mean for a point x to be interior to a set A?
A is a neighborhood of x.
43
What is the notation for the interior of a set A?
The interior of A is denoted by A°.
44
If A is a subset of a metric space, what can be said about its interior?
A ⊆ A°.
45
What is the definition of adherence of a set A in a metric space?
A point x is adherent to A if B(x, r) ∩ A ≠ ∅ for all r > 0.
46
What is the notation for the adherence of a set A?
The adherence of A is denoted by A̅.
47
What is the relationship between a point x and set A for x to belong to A?
x ∈ A if and only if for every neighborhood V of x, V ∩ A ≠ ∅.
48
What is the definition of a closed set in a metric space?
A set A is closed if A̅ = A.
49
What is the definition of a dense subset in a metric space?
A subset A is dense in E if A̅ = E.
50
What is the definition of the boundary of a set A?
Fr(A) = A̅ ∩ ∁A.
51
What are isolated points in a set A?
A point x ∈ A is isolated if there exists a neighborhood V of x such that V ∩ A = {x}.
52
What are accumulation points in a set A?
A point x ∈ E is an accumulation point of A if every neighborhood of x contains an infinite number of points of A.
53
What is the definition of the induced topology on a subset A of a metric space E?
The topology on A is defined as dA = d|A×A.
54
What is the definition of the product topology on a product of metric spaces?
The topology of the product space E = E1 × ... × En is defined using distances δ∞, δ1, or δ2.
55
What is the definition of a limit in the context of metric spaces?
f(x) tends to l as x tends to x0 if for every neighborhood V of l, there exists a neighborhood U of x0 such that f(U) ⊆ V.
56
What does it mean for a function f to be continuous at a point x0?
For every ε > 0, there exists η > 0 such that dE(x, x0) < η implies dF(f(x), l) < ε.
57
What is the definition of the limit of a function f at a point x0?
l = lim f(x) as x approaches x0 if for every neighborhood V of l, there exists a neighborhood U of x0 such that f(U) ⊂ V.
58
What does it mean for a function f to be continuous at a point x0?
f is continuous at x0 if lim f(x) = f(x0) as x approaches x0.
59
What is the equivalent condition for continuity of f at x0?
∀ϵ > 0, ∃η > 0 such that ∀x ∈ E, dE(x, x0) < η ⇒ dF(f(x), f(x0)) < ϵ.
60
What is the unique limit of f at x0 if it approaches two different limits l and l'?
l is unique; if f(x) approaches both l and l', then l = l'.
61
What is the notation for the limit of f(x) as x approaches x0?
lim f(x) as x approaches x0.
62
What is the definition of the restriction of a function f to a subset A?
fA = f|A, where A ⊂ Df.
63
How is the limit expressed when A excludes a point x0?
lim f(x) as x approaches x0 with x ≠ x0.
64
True or False: If lim f(x) = l, then lim f(x) = l.
True.
65
What is the condition for a function to be continuous on the entire domain E?
f is continuous on E if it is continuous at every point x0 ∈ E.
66
What is the definition of the extension of a function by continuity?
If lim f(x) = l ∈ F as x approaches x0, then g(x) = f(x) if x ≠ x0 and g(x0) = l.
67
What is the condition for the composition of functions g and f to be continuous?
If lim f(x) = l1 and lim g(y) = l2, then lim (g ◦ f)(x) = l2 as x approaches x0.
68
What type of function is continuous if it is a polynomial of n real variables?
Every polynomial function of n real variables is continuous on Rn.
69
What does it mean for two distances d and δ on a set E to be topologically equivalent?
The identity map idE : (E, d) → (E, δ) is a homeomorphism.
70
What is the condition for f to be a homeomorphism from E to F?
f is a bijection and both f and its inverse f−1 are continuous.
71
What is the condition for the inverse image of an open set under a function to be open?
f is continuous if for every open set Ω in F, f−1(Ω) is an open set in E.
72
What is the significance of the projection functions pi in a product space?
The projection functions pi: E → Ei are continuous for each i.
73
What is the relationship between the continuity of a function f and its component functions fi?
f is continuous if and only if each component function fi is continuous.
74
What is the consequence if g is continuous at a and g(a) ≠ 0?
1/g is continuous at a.
75
Fill in the blank: A function is continuous if for every _______ in F, the pre-image under f is open in E.
open set
76
Fill in the blank: A function is continuous on E if for every _______ in F, the pre-image under f is closed in E.
closed set
77
Qu'est-ce qu'une application continue en un point ?
Une application f est continue en ai si chacune de ses composantes ψi est continue. ## Footnote Cela implique que pour toute suite convergente, l'image de cette suite converge vers l'image du point limite.
78
Vrai ou Faux : La réciproque de la continuité d'une application est toujours vraie.
Faux ## Footnote Exemple : L'application f définie par f(x,y) = x² + y² si (x,y) ≠ (0,0) et f(0,0) = 0 est continue en (0,0), mais ses applications partielles ne le sont pas.
79
Définir une application uniformément continue.
Une application f est uniformément continue sur E si pour tout ϵ > 0, il existe η > 0 tel que pour tous (x, y) ∈ E, dE(x, y) < η implique dF(f(x), f(y)) < ϵ. ## Footnote Cela signifie que la continuité ne dépend pas du point choisi dans E.
80
Proposition : Quelles implications a une application uniformément continue ?
Toute application uniformément continue est continue. ## Footnote Cependant, la réciproque est fausse.
81
Qu'est-ce qu'une application lipschitzienne ?
Une application f est lipschitzienne s'il existe une constante k > 0 telle que pour tous x, y ∈ E, dF(f(x), f(y)) ≤ k * dE(x, y). ## Footnote On dit alors que f est k-lipschitzienne.
82
Vrai ou Faux : Toute application lipschitzienne est uniformément continue.
Vrai ## Footnote Cela découle directement de la définition d'une application lipschitzienne.
83
Définir la convergence d'une suite dans un espace métrique.
Une suite (xn)n∈N converge vers un point x ∈ E si pour tout voisinage V de x, il existe N ∈ N tel que n ≥ N implique xn ∈ V. ## Footnote Cela est équivalent à dire que d(x, xn) < ϵ pour tout ϵ > 0.
84
Proposition : Si une suite converge dans un espace métrique, que peut-on dire de sa limite ?
La limite de la suite est unique. ## Footnote Cela est dû à la séparation de l'espace métrique.
85
Qu'est-ce qu'une isométrie ?
Une application f est une isométrie si pour tous x, y ∈ E, dF(f(x), f(y)) = dE(x, y). ## Footnote Toute isométrie est également lipschitzienne.
86
Vrai ou Faux : Une valeur d'adhérence d'une suite est unique.
Faux ## Footnote Une suite peut avoir plusieurs valeurs d'adhérence.
87
Définir une valeur d'adhérence d'une suite.
Un point a ∈ E est une valeur d'adhérence de la suite (xn)n∈N si pour tout voisinage V de a, l'ensemble {n ∈ N / xn ∈ V} est infini. ## Footnote Cela implique qu'il existe une infinité de termes de la suite qui se rapprochent de a.
88
Qu'est-ce qu'une suite de Cauchy ?
Une suite est de Cauchy si pour tout ϵ > 0, il existe N ∈ N tel que pour tous m, n ≥ N, d(xm, xn) < ϵ. ## Footnote Cela signifie que les éléments de la suite se rapprochent les uns des autres à mesure que l'on progresse dans la suite.
89
What is the definition of a Cauchy sequence in a metric space (E, d)?
A sequence (xn)n∈N of points in E is a Cauchy sequence if ∀ϵ > 0, ∃N ∈ N such that p, q > N ⇒ d(xp, xq) < ϵ.
90
True or False: Every convergent sequence in a metric space is also a Cauchy sequence.
True.
91
What property does every Cauchy sequence possess?
Every Cauchy sequence is bounded.
92
If a Cauchy sequence (xn)n∈N has an adherence point x, what can be concluded?
It converges to the adherence point x.
93
What is a complete metric space?
A metric space (E, d) is complete if every Cauchy sequence in (E, d) converges in (E, d).
94
According to the Bolzano-Weierstrass theorem, what can be extracted from any bounded sequence of real numbers?
A convergent subsequence.
95
Is the space R with the usual distance complete?
Yes.
96
What is the result when taking the product of k complete metric spaces?
The product space E = E1 × · · · × Ek is also complete.
97
What defines a contraction mapping in a metric space (E, d)?
A mapping f: E → E is a contraction if there exists a real number 0 < k < 1 such that ∀x, y ∈ E, d(f(x), f(y)) ≤ kd(x, y).
98
What can be concluded about the existence and uniqueness of fixed points for contractions in complete metric spaces?
Every contraction has a unique fixed point.
99
What is a covering of a subset A in a metric space (E, d)?
A family (Ai)i∈I of subsets of E such that A ⊆ ∪i∈I Ai.
100
What is a compact space in terms of open coverings?
A metric space (E, d) is compact if from every open covering of E, a finite subcovering can be extracted.
101
True or False: Every finite subset of a metric space is compact.
True.
102
What is a property of every compact subset of a metric space?
Every compact subset is bounded.
103
What is the relationship between compact sets and closed sets in metric spaces?
Every compact subset of a metric space is closed.
104
Qu'est-ce qu'une partie compacte d'un espace métrique?
Une partie compacte d'un espace métrique (E, d) est celle qui est fermée et bornée.
105
Proposition : Toute partie compacte d'un espace métrique est ______.
fermée.
106
Quelle est la caractéristique d'une partie ouverte dans le contexte de la compacité?
Si K est compact, alors son complémentaire ∁K est ouvert.
107
Si E est compact, alors toute partie fermée F de E est ______.
compacte.
108
Théorème de Borel-Lebesgue : Tout intervalle fermé borné [a, b] de R est ______.
compact.
109
Quelles sont les caractéristiques d'une partie K de R pour être considérée comme compacte?
K est fermée et bornée.
110
Quel est le résultat pour les espaces métriques compacts E1, E2, ... Ek?
L'espace métrique produit E = E1 × ... × Ek est compact.
111
Vrai ou Faux : Dans un espace métrique compact, si une suite de fermés non vides est décroissante, alors leur intersection est non vide.
Vrai.
112
Théorème sur les suites : Dans un espace métrique compact (E, d), toute suite (xn)n∈N de points de E admet au moins une ______.
valeur d'adhérence dans E.
113
Corollaire 1 : Dans un espace m´etrique compact, de toute suite (xn)n∈N de points, on peut extraire une ______.
sous-suite convergente dans E.
114
Qu'est-ce que le théorème de Bolzano-Weierstrass?
De toute suite bornée de nombres réels, on peut extraire une sous-suite convergente.
115
Qu'est-ce qu'un espace métrique complet?
Un espace métrique où toute suite de Cauchy converge.
116
Lemme 1 : Si K est une partie de E et toute suite de points de K admet au moins une valeur d'adhérence dans K, alors pour tout ϵ > 0, il existe un ______.
recouvrement de K par un nombre fini de boules ouvertes de rayon ϵ.
117
Lemme 2 : Si K est une partie de E et toute suite de points de K admet au moins une valeur d'adhérence dans K, alors il existe ϵ > 0 tel que pour tout x ∈ K, il existe ______.
i ∈ I tel que B(x, ϵ) ⊂ Oi.
118
Théorème : K est compacte si et seulement si toute suite de points de K admet au moins une ______.
valeur d'adhérence dans K.
119
En résumé, quelles sont les deux conditions pour qu'une partie K d'un espace métrique soit compacte?
* K est fermée * K est bornée
120
Vrai ou Faux : Un intervalle ouvert de R est toujours compact.
Faux.
121
Quel est le lien entre la compacité et la continuité dans un espace métrique?
Un espace métrique compact garantit que toute fonction continue atteint ses extrema.
122
What is the definition of a compact set in metric spaces?
A set K is compact if every open cover of K has a finite subcover.
123
What does it mean for a function f: (E, dE) → (F, dF) to be bounded?
f is bounded if f(E) is a bounded subset of F.
124
If f is continuous on a compact set A in E, what can be concluded about f(A)?
f(A) is compact in F.
125
True or False: If E is compact, then f(E) is compact.
True
126
What is the Heine theorem regarding continuity and compactness?
If f is continuous on a compact subset K of E, then f is uniformly continuous on K.
127
What is the definition of a connected metric space?
A metric space (E, d) is connected if there is no partition of E into two non-empty open sets.
128
What are the equivalent assertions that define a connected space?
* E is connected * The only open and closed subsets of E are E and ∅ * There is no partition of E into two non-empty closed sets.
129
What is a connected subset of a metric space?
A subset A of a metric space (E, d) is connected if the subspace (A, dA) is a connected metric space.
130
What is the relationship between connectedness and continuous functions?
If E is connected and f: E → F is continuous, then f(E) is connected.
131
What is a path in a metric space?
A path joining a and b is a continuous function f: [α, β] → E where f(α) = a and f(β) = b.
132
What does it mean for a space to be connected by arcs?
A metric space (E, d) is connected by arcs if for all a, b ∈ E, there exists a path joining a and b.
133
What is the conclusion about intervals in R regarding connectedness?
A subset A of R is connected if and only if A is an interval.
134
Fill in the blank: A function f is said to be ______ if it attains its bounds on a compact set K.
bounded
135
True or False: The image of a compact set under a continuous function is always compact.
True
136
If A is a connected set in a metric space and B contains A, what can be concluded about B?
B is connected.
137
What is the result of the product of two connected metric spaces?
The product of a finite family of connected metric spaces is connected if each space is connected.
138
What is a path joining two points a and b in Rn?
f : [0, 1] → Rn, t → (1 − t) a + tb ## Footnote This function defines a continuous path between points a and b in Rn.
139
What does it mean for a metric space (E, d) to be arc-connected?
It means every pair of points in E can be joined by a continuous path in E.
140
True or False: Every arc-connected metric space is connected.
True.
141
Give an example of an arc-connected space.
Rn is arc-connected.
142
What is the definition of a normed vector space?
A vector space E equipped with a norm, denoted as (E, .).
143
What does it mean for an application to be uniformly continuous?
An application is uniformly continuous if it satisfies the Lipschitz condition: |f(x) - f(y)| ≤ k |x - y| for some k > 0.
144
What are the two types of operations defined for a normed vector space (E, .)?
Addition s : (x, y) ∈ E × E → x + y ∈ E and scalar multiplication p : (λ, x) ∈ K × E → λx ∈ E.
145
What does it mean for an application to be continuous in a normed vector space?
It means small changes in input result in small changes in output.
146
Fill in the blank: The norm of uniform convergence is defined as _______.
sup_{x ∈ X} |f(x)|.
147
What theorem states that if (E, .) is complete, then (Fb(X, E), . ∞) is complete?
Theorem on the completeness of bounded functions.
148
What is a linear continuous application?
An application f from E to F that is both linear and continuous.
149
What notation is used for the set of continuous linear applications from E to F?
L(E, F).
150
What are the equivalent conditions for a linear application f from E to F to be continuous?
* f is continuous on E * f is continuous at 0E * There exists a constant k > 0 such that ∀x ∈ E, ||f(x)||F ≤ k ||x||E.
151
What does it mean for all norms on a finite-dimensional vector space E to be equivalent?
All norms induce the same topology on E.
152
What is the definition of a multivariable continuous application?
An application f : E1 × E2 × ... × En → F that is linear in each variable and continuous.
153
What is the significance of the closed ball Bf(0E, 1) in a finite-dimensional space?
It is compact.
154
True or False: Every linear application of Rn into Rp is continuous.
True.
155
What is the condition for a bilinear application f : E1 × E2 → F to be continuous?
It is continuous if it is continuous at (0E1, 0E2) and there exists a constant k > 0 such that ∀(x1, x2) ∈ E1 × E2, ||f(x1, x2)||F ≤ k ||x1||E1 × ||x2||E2.
156
What is the definition of a norm on L(E, F)?
For f ∈ L(E, F), ||f|| = sup_{x ∈ E, x ≠ 0} ||f(x)||F / ||x||E.
157
What does the corollary about composition of linear applications state?
If g ∈ L(F, G) and f ∈ L(E, F), then g ◦ f ∈ L(E, G) and ||g ◦ f|| ≤ ||g|| ||f||.
158
Comment est défini un espace de Banach ?
Un espace vectoriel normé sur K = R ou C qui est complet ## Footnote Un espace de Banach réel est un espace de Banach sur R, et un espace de Banach complexe est sur C.
159
Quelle est la proposition concernant les espaces vectoriels de dimension finie ?
Tout espace vectoriel de dimension finie sur K = R ou C est un espace de Banach.
160
Quelle est la norme de la convergence uniforme dans le contexte des espaces de Banach ?
La norme de la convergence uniforme est notée ∞.
161
Qu'est-ce qu'un isomorphisme d'espaces vectoriels normés ?
Une application f : (E, E) → (F, F) qui est linéaire, bijective, continue, et dont la réciproque f⁻¹ est continue.
162
Quand une application linéaire continue et bijective entre deux espaces de Banach est-elle un isomorphisme ?
Elle est un isomorphisme d'espaces vectoriels normés.
163
Qu'est-ce que l'inégalité de Cauchy-Schwarz ?
| < x, y > | ≤ √< x, x >√< y, y >.
164
Comment définit-on un espace préhilbertien réel ?
Un espace vectoriel sur R muni d'un produit scalaire.
165
Qu'est-ce qu'un espace de Hilbert réel ?
Un espace préhilbertien réel qui est complet pour la norme associée au produit scalaire.
166
Qu'est-ce que la norme associée au produit scalaire dans un espace préhilbertien ?
Pour tout x ∈ H, la norme est définie par x = √< x, x >.
167
Quelle est la définition d'un espace de Banach complexe ?
Un espace de Banach sur C.
168
Qu'est-ce que la série exponentielle dans le contexte des espaces de Banach ?
La série Σ (1/n!) fⁿ converge normalement, où f⁰ = IdE et fⁿ = f ∘ ... ∘ f (n fois).
169
Quelle condition doit remplir IdE − u pour être inversible dans L(E, E) ?
Il faut que u < 1.
170
Qu'est-ce qu'un espace vectoriel normé ?
Un espace vectoriel muni d'une norme.
171
Pour tous x, y ∈ H, quelle est l'inégalité qui doit être satisfaite par la norme associée ?
x + y ≤ x + y.
172
Vrai ou Faux : Un espace de Hilbert réel est un espace de Banach réel.
Vrai.
173
Qu'est-ce que la continuité d'une application f en un point a ?
lim (x→a) f(x) = f(a).
174
Complétez l'espace vectoriel normé : Un espace vectoriel normé est complet si _______.
[il contient toutes les suites de Cauchy].
175
Qu'est-ce que l'application : u ∈ Isom(E, F) → u⁻¹ ∈ Isom(F, E) ?
Elle est continue.
176