Trig I No Longer Care About for the GRE Flashcards
(35 cards)
tan²θ, csc²θ, cot²θ, and sec²θ relationships
1 + tan²θ = sec²θ 1 + cot²θ = csc²θ
cotθ = tan(a) What is a?
a = π/2 - θ so cotθ = tan(π/2 - θ)
sin(2x)
Double-angle formula: 2sinxcosx
cos(2x)
Double-angle formula:
cos²x-sin²x
=2cos²x-1
=1-2sin²x
tan(2x)
Double-angle formula: (2tanx) / (1-tan²x)
∫ sec²x dx
tanx + C
∫ 1/(x²+1) dx
tan⁻¹x + C
∫ cscx cotx dx
-cscx + C
∫ 1/√(1-x²) dx
sin⁻¹x + C
sin²x
Half-angle formula: (1-cos(2x))/2
cos²x
Half-angle formula: (1+cos(2x))/2
∫dx/(x²+a²)
1/a tan⁻¹(x/a) + C
Trig sub for √(a²-x²)
x=asinθ
Trig sub for √(a²+x²)
x=atanθ
Trig sub for √(x²-a²)
x=asecθ
2sinxcosx
Double-angle formula sin(2x)
cos²x-sin²x
Double-angle formula
cos(2x)
2cos²x-1
1-2sin²x
2cos²x-1
Double-angle formula
cos(2x)
cos²x-sin²x
1-2sin²x
1-2sin²x
Double-angle formula
cos(2x)
cos²x-sin²x
2cos²x-1
(1-cos(2x))/2
Half-angle formula sin²x
(1+cos(2x))/2
Half-angle formula cos²x
sin(x+y)
sinx cosy + cosx siny
sinx cosy + cosx siny
sin(x+y)
sin(x-y)
sinx cosy - cosx siny