Trig Identities Flashcards
(42 cards)
Pythagorean identity sin^2(x)
sin^2(x) = 1 - cos^2(x)
Pythagorean identity cos^2(x)
cos^2(x) = 1 - sin^2(x)
Pythagorean identity tan^2(x)
tan^2(x) = sec^2(x) - 1
Pythagorean identity cot^2(x)
cot^2(x) = csc^2(x) - 1
Reciprocal identity for sin(x)
sin(x) = 1/csc(x)
Reciprocal identity for cos(x)
cos(x) = 1/sec(x)
Reciprocal identity for tan(x)
tan(x) = 1/cot(x)
Reciprocal identity for csc(x)
csc(x) = 1/sin(x)
Reciprocal identity for sec(x)
sec(x) = 1/cos(x)
Reciprocal identity for cot(x)
cot(x) = 1/tan(x)
Quotient identity for tan(x)
tan(x) = sin(x)/cos(x)
Quotient identity for cot(x)
cot(x) = cos(x)/sin(x)
Sum identity for sin(a+b)
sin(a+b) = sin(a)cos(b) + cos(a)sin(b)
Sum identity for sin(a-b)
sin(a-b) = sin(a)cos(b) - cos(a)sin(b)
Sum identity for cos(a+b)
cos(a+b) = cos(a)cos(b) - sin(a)sin(b)
Sum identity for cos(a-b)
cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
Sum identity for tan(a+b)
tan(a+b) = [tan(a) + tan(b)]/[1 - tan(a)tan(b)]
Sum identity for tan(a-b)
tan(a-b) = [tan(a) - tan(b)]/[1 + tan(a)tan(b)]
Double angle identity for sin(2x)
sin(2x) = 2sin(x)cos(x)
Double angle identity for cos(2x) (first form)
cos(2x) = cos²(x) - sin²(x)
Double angle identity for cos(2x) (second form)
cos(2x) = 2cos²(x) - 1
Double angle identity for cos(2x) (third form)
cos(2x) = 1 - 2sin²(x)
Double angle identity for tan(2x)
tan(2x) = 2tan(x)/[1 - tan²(x)]
Half angle identity for sin(x/2) (with positive radical)
sin(x/2) = ±√[(1 - cos(x))/2]