Trigonometric Functions Flashcards Preview

Math and Calculus > Trigonometric Functions > Flashcards

Flashcards in Trigonometric Functions Deck (39):
1

90° in radians

π /2

2

csc θ =

1/sinθ = h/o

3

sec θ =

1/cosθ = h/a

4

cot θ =

1/tanθ = a/o

5

sin θ =

o/h

6

tan θ =

o/a

7

180° in raidans

π 

8

270° in radians

3π /2

9

360° in radians

2π 

10

Reciprocal Identities

sin x =

1/csc x

11

Reciprocal Identities

csc x =

1/sin x

12

Reciprocal Identities

sec x =

1/cos x

13

Reciprocal Identities

cos x =

1/sec x

14

Reciprocal Identities

tan x =

1/cot x

15

Reciprocal Identities

cot x =

1/tan x

16

Reciprocal Identities

tan x =

sin x/cos x

17

Reciprocal Identities

cot x = cos x/sin x

18

Pythagorean Identities

sin2 x + cos2 x = 

= 1

19

Pythagorean Identities

1 + tan2 x =

sec2 x

20

Pythagorean Identities

1 + cot2 x =

csc2 x

21

Cofunction Identities

sin(π/2-x) =

cos x

22

Cofunction Identities

cos(π/2-x) =

sin x

23

Cofunction Identities

csc(π/2-x) =

sec x

24

Cofunction Identities

tan(π/2-x) =

cot x

25

Cofunction Identities

sec (π/2-x) =

csc x

26

Cofunction Identities

cot(π/2-x) =

tan x

27

Even/Odd Identities

sin(-x) =

- sin x

28

Even/Odd Identities

csc(-x) =

-csc x

29

Even/Odd Identities

sec(-x) =

sec x

30

Even/Odd Identities

cos(-x) =

cos x

31

Even/Odd Identities

tan(-x) =

-tan x

32

Even/Odd Identities

cot(-x)=

-cot x

33

tan 90°

= sin(90°)/cos(90°)=1/0=undefined

34

2 important pythagorean identities

cos2(x) + sin2(x)=1

1 + tan2(x)=sec2(x)

35

complementary trig relationships

sin(x)=cos(π/2-x)

tan(x)=cot(π/2-x)

sec(x)=csc(π/2-x)

these can be flipped, eg, trade sin and cos

36

sin(A+B)=

sin(A) cos(B) +cos(A) sin(B)

the +/-  signs on both sides of the equation may be flipped and msintain the relationship

37

cos(A+B)=

cos(A) cos(B)-sin(A) sin(B)

the +/-  signs on both sides of the equation may be flipped and msintain the relationship

38

Double angle formula

sin(2x)=

2sin(x)cos(x)

39

Double angle formula

cos(2x)=

2cos2x-1 =

1 - 2sin2(x)