U10: Convergence & Divergence Flashcards
(15 cards)
Geometric Series Test
Converge: |r| < 1
Diverge: |r| >= 1
FORMAT: Σar^n
CONVERGES AT: a /(1-r)
nth Term Test
Converge: N/A
Diverge: lim(n→ ∞) a(n) ≠ 0
INCONCLUSIVE: a(n) = 0
Integral Test
Converge: ∫a(n)dn converges
Diverge: ∫a(n)dn diverges
CONDITIONS:
1) Positive
2) Continuous
3) Decreasing
p-Series Test
Converge: p > 1
Diverge: p <= 1
FORMAT: 1/(n^p)
HARMONIC SERIES: p=1 (diverges)
Comparison Test
Converge: a larger series converges
Diverge: a smaller series diverges
Limit Comparison Test
Converge: other series converges
Diverge: other series diverges
MATH: lim(n → ∞) (a(n) / b(n)) = L
CONDITIONS:
1) a(n) and b(n) are positive
2) L is finite and positive
Alternating Series Test
Converge: see below
Diverge: fails both tests
ABSOLUTE: |a(n)| converges
CONDITIONAL:
1) lim(n → ∞) a(n) = 0
2) a(n+1) <= a(n)
FORMAT: Σ(-1)^n a(n)
Ratio Test
Converge: < 1
Diverge: > 1 (including ∞)
MATH: | lim(n → ∞) (a(n+1)/a(n)) |
INCONCLUSIVE: = 1
Alternating Series Error Bound
|S - S(n)| <= |a(n+1)|
(Absolute value of next term)
Lagrange Error Bound
|Rn(x)| <=
( |x-c|^(n+1) / (n+1)! ) * max|f(n+1)(z)|
For Taylor Polynomials
Taylor Polynomial terms
a(n) = ( f(n)(c) / n! ) * (x-c)^n
Power Series Convergence Interval
1) Ratio test ( lim (n → ∞) |a(n+1)/a(n)| )
2) set absolute value less than 1
3) algebraically find radius
4) add/subtract from center for interval
Converge: inside radius (absolute)
Diverge: outside radius
INCONCLUSIVE: at radius (test each)
e^x Taylor Approximation
Σ x^n / n!
n=0, ∞
sin(x) Taylor Approximation
Σ(-1)^n ( x^(2n+1) / (2n+1)! )
n=0, ∞
cos(x) Taylor Approximation
Σ(-1)^n ( x^(2n) / (2n)! )
n=0, ∞