Year 1 Prob Flashcards
(80 cards)
1
Q
def sample space, sample point, evento
A
e
2
Q
operations of set theory
A
e
3
Q
disjoiint, pairwise
A
e
3
Q
laws of set theory (comm)
A
e
4
Q
collections (de morgan)
A
e
5
Q
event space, satisfies
A
e
6
Q
prob measure and axoims
A
e
7
Q
calculus of probabilities
A
e
8
Q
finite additivity of disjoint events
A
e
9
Q
probswe between 0, 1
A
e
10
Q
other probabloity results (partition rule etc)
A
e
11
Q
specify porobablities
A
e
12
Q
classical interpretation
A
e
13
Q
equally likely
A
e
14
Q
examples
A
e
15
Q
multiplication principle
A
e
16
Q
combination, oermutation
A
e
17
Q
sampling without replacement proof
A
e
18
Q
sampling with replacement
A
e
19
Q
def conditional prob
A
e
20
Q
multiplication law
A
e
21
Q
partition
A
e
22
Q
law of total probablility
A
e
23
Q
bayes theorem
A
e
24
independence
e
25
indep, complem
e
26
def random variable
e
27
def discrete rv
e
28
def continuos rc
e
29
induced prob
e
30
probablity mass function
e
31
cumulative distribution function
e
32
properties of dcfs
e
33
properties of intervals
e
34
defining cdfs
e
35
Bernoulli trial
e
36
bernoulli distribution
e
37
binomial distribution
e
38
eometric distribution
e
39
Poisson distribuitions
e
40
bivariate distributions
e
41
joint pmf
e
42
marginal pmf
e
43
indeoendence of drv
e
44
alternative def independence
e
45
sums of ind drv
e
46
uniform distribtution
e
47
exponential distribution
e
48
normal distribution
e
49
probabliilty density function
e
50
density of uniform
e
51
density exponential
e
52
bivariate dsist(con)
e
53
JOINT CDF CONTINN
E
54
joiint pdf contin
e
55
independence crv
e
56
alternative crv ind
e
57
expectation crv
e
58
expectation drv
e
59
non negatrve rv exp
e
60
unconscious statistician
e
61
ex constant is constant
e
62
linearity of expectation
e
63
modulus over modulus expectation
e
64
expected value product of irv
e
65
variance def
e
66
variance positive
e
67
calculating the variance
e
68
variance of a constant is 0
e
69
variance of a linear function
e
70
covariance
e
71
correlation
e
72
calculating the3 covaraiance
e
73
independence 0 cov
e
74
variance of a sum of rv
e
75
sum of n rv
ew
76
sum on ind rv
e
77
Covariance of linear functions of rvs
e
78
Law of large nUMBERS
E
79