'You are a spy who is about to be exposed' distribution Flashcards
(7 cards)
1
Q
how to find discrete variance
A
<x^2> - <x>^2
or
sum [ (x - <x>)^2 * P(x) ]
(expectation value of squared difference from <x>)
2
Q
how to find discrete expectation value
A
sum [ x * P(x) ]
3
Q
how to find expectation value of f(x) for prob mass function P(x)
A
sum [ f(x) * P(x) ]
4
Q
bernoulli distribution
A
- sample space omega = {0, 1}
- P(x|p) = p^x * (1 - p)^(1 - x)
- <x> = p
- var(x) = p(1 - p)
5
Q
binomial distribution
A
- P(k|N, p) = NCk * p^k * (1 - p)^(N - k)
- sample space omega = {0, 1, … , N - 1, N}
- <k> = Np
- var(k) = Np(1 - p)
- <k> and var(k) are just N times bernoulli
6
Q
poisson distribution
A
- limit of binomial for N->inf, p->0, lambda = Np
- P(k|lambda) = lambda^k * exp(- lambda) / k!
- <k> = lambda
- var(k) = lambda
- <k> and var(k) same as binomial but applying p->0
7
Q
nth central moment
A
mu_n = <(x - <x>)^n>
(var(x) is 2nd central moment)