Biopsychology Flashcards Preview

A2 Psychology > Biopsychology > Flashcards

Flashcards in Biopsychology Deck (34):

What is brain localisation?

Theory that different parts of the brain are responsible for different functions. It was put about by Broca and Weirnicke


What are the parts of the brain? (Cortexes, etc.)

In each cortex their are four lobes; the frontal lobe; the parietal lobe; the occipital lobe and the temporal lobe. The cerebral cortex is 3mm thick and covers the whole brain, acting like a tea cosy. Each lobe is responsible for a different function.
The frontal is responsible for Motor functions - controlling voluntary movement in the other side of the body (due the hemisphere stuff).Damage to this could result in a loss of control over fine movements.
In the front of the parietal lobes in the somatosensory area which in responsible for sensory information from the skin. The amount of the somatosensory area dedicated to one body part denotes it's sensitivity -for example over half of the somatosensory area is dedicated to the face and hands.
The visual area is at the back of occipital lobe. each eye sends visual information from the left visual field to the right hemisphere and information from the right visual field to the left hemisphere. This means the damage to the left hemisphere will result in blindness in the right visual field of both eyes.
The temporal lobes house the auditory area which analyses speech information. Damage may produce deafness - the more significant the damage the greater the loss. Damage to Wernicke's area may also result in loss of the ability to comprehend language. In some patients with Wernicke's aphasia language is fluent but makes no sense (neologisms)
Speech is produced in the left hemisphere in Broca's area - a small area in the left frontal lobe. Damage can result in Broca's aphasia which is speech that slow, laborious and lacks fluency (one patient could only say "tan").


Evaluate brain localisation

Brain scans provide evidence to support the theory of brain localisation. Petersen et al (1988) showed that different areas are during different tasks - suggesting the have different functions. Tulving et al (1994) also found that different types of memory reside in different areas of the prefrontal cortex. There are also many ways of researching activity in the brain.
Neurosurgery is sometimes used in extreme cases of OCD or depression. Dougherty (2002) reported on 44 patients that had undergone a cingulotomy - after 32 weeks a third had met criteria for success and 14% for a partial success. This suggests that behaviours and symptoms for serious mental illnesses are localised.
The case of Phineas Gage also supports this theory.
The theory of brain plasticity however contradicts this theory.


What is the theory of brain plasticity?

Brain plasticity is the theory that the brain has the ability to change throughout it's lifetime. During infancy the brain has a rapid increase in the amount of synaptic transmissions it can make; peaking at around 15,000 at age 2-3 (around double the amount in an adult brain). As we age rarely used synaptic connections are removed and ones used often are strengthened (synaptic pruning).
It was thought that after childhood the brain remained fixed - it is however thought that anytime neural connections can change and be made due to new learning.


Outline research into brain plasticity.

Maguire et al (2002) found that london taxi drivers and found that there was significantly more grey matter (the area associated with spatial and navigational skills) in their brains that that of bus drivers. This is because taxi drivers have to take a text called "the knowledge" which assess their knowledge of london's streets and possible routes - it is thought that this alters the structure of their brains. It was also found that the longer they had been in the job the more pronounced the difference was.


What is functional recovery?

After a trauma, such as a stroke, unaffected areas of the brain are able to compensate for damaged areas. This functional recovery is an example of brain plasticity. The areas will take over for areas that are damaged, missing or destroyed. Neuroscientists suggest that initially it occurs quickly but slows down after several weeks or months.
During recovery the brain is able to create new synaptic transmissions close to area of damage. Secondary neural pathways are also created or "unmasked". A number of structural changes also occur.
Axonal Sprouting: The growth of new nerve endings which connect with undamaged nerve endings.
Reformation of blood vessels
Recruitment of similar areas on the other side of the brain to carry out functions. After a while functions may shift back to the other side of the brain.


Evaluate plasticity.

Understanding has contributed to the field of neurorehabilitation. Following illness functional recovery slows down so therapy is needed to help encourage this.
Plasticity can also work backwards. Prolonged drug use has shown reduced cognitive ability as well as an increased risk of dementia in later life. 60-70% of amputees have also shown phantom limb syndrome. This is unpleasant, painful and thought to be down to the cortical reorganisation of the somatosensory area.
Functional plasticity tends to reduce with age. One study gave people aged 40-60 40 hours of golf training and using fMRI scans found reduced motor cortex movements compared to a control group - suggesting that neural plasticity continues throughout life.
One study found that educational attainment may influence how well the brain recovers after injury. The more time patients spent in education the greater the chance of disability-free recovery (DFR). 2/5 of those who achieved DFR had 16 years of education - compared to 10% who had had 12 years of education


What is hemispheric lateralisation?

The idea that certain functions or abilities are found in one hemisphere of the brain. As such the two hemispheres are functionally different


Outline split-brain research.

Sperry (1968)
Aim: To see if brain hemispheres are functionally different.
Procedure: Participants were patients who had had a commissurotomy - breaking the connection between the two hemispheres. Sperry projected one word in the left visual field and another in the right; this was done quickly so that only the intended eye could see the word.
Findings: Participants could identify words in the right visual field, but not in the left - this is because there is no language in the right hemisphere.
Participants were able to select objects matching words with their left hand - but could not attach verbal labels to objects in the left visual field. They were also able to select objects associated with words in the left field (i.e Ashtray/cigarette). If two words were presented (one in each field) the participant would write the word in the left field and say the word in the right field.
Conclusions: The brain is subject to hemispheric lateralisation as participants behaved differently to how those with a "normal" brain would.


Evaluate split brain research

Most research suggests that the brain is under hemispheric lateralisation. It suggests that the left hemisphere is the language center and the right hemisphere is better at spatial tasks and music. The left hemisphere is the analyser and the right is the synthesiser.
Sperry used highly standardised procedures that allowed him to control and vary parts of it. This allowed him to develop a useful procedure and thus increased the validity of the study.
Sperry's research had prompted a theoretical debate about the level of integration within the brain. Some researchers have suggested that the brain is actually two minds inside one, whilst others suggested that it is a highly integrated process.
Sperry's research used 11 severely epileptic patients so their brain's may have been damaged by the epilepsy - resulting in their brains operating differently.


What is an fMRI scan?

A Functional Magnetic Resonance Imaging (fMRI) scan. detects changes in blood oxygenation in the brain and visualise this as an image. Blood oxygenation occurs as a result of activity in the brain (haemodynamic response) and so this shows up on the scan. fMRI's can produce 3D images that show which areas are the most active (activation maps). it is good for showing localisation of function in the brain.


Evaluate fMRI scans

It does not involve using radiation - unlike other scanning techniques (such as PET). If used correctly it is virtually risk free, non invasive and straightforward to use.
The images it produces also have high spatial resolution - meaning that it very clear which parts of the brain are being used.
It is expensive and is only clear if the participant stays completely still.
It has poor temporal resolution as there is a 5 second lag between activity and it appearing on screen. It can also only show blood activity and not individual neurons - meaning that it does not show what activity is taking place.


What is a Electroencephalogram (EEG)?

Measures brain activity using electrodes that are fitted to a participant's brain using a skull cap. The scan provides information from millions of neurons - thereby giving an overall representation of brain activity. Clinicians often use EEG's to diagnose conditions with arrhythmic patterns - such epilepsy, tumors or sleep abnormality.


Evaluate EEG's

EEG's have been useful in diagnosing epilepsy (this is because it is characterised by random bursts of activity - which can be seen on screen). It has also helped with our understanding of sleep patterns.
It also has a high temporal resolution and so can detect activity to within a millisecond.
The information received is very generalised and the EEG cannot pinpoint where the signal is coming from. This means researchers cannot differentiate between different, but adjoining, areas of the brain.


What are Event-Related Potentials (ERPs)?

EEGs provide a crude overview of brain activity but do contain all the information that is related to sensory, cognitive and motor actions. This means that researchers can isolate this responses using a statistical averaging technique; leaving only actions that relate to a specific event. These are ERPs - neural responses triggered by a specific event or stimuli. Research has found many ERPs related to processes such as attention or perception.


Evaluate ERPs

They bring more measurement to EEGs - which are very raw. As they are derived from EEGs they also have high temporal resolution - meaning researchers use the for measuring cognitive functions and deficits. Researchers have also been able to find many ERPs and their role in cognitive functioning - i.e the P300 component is thought to be related to attention and the maintenance of working memory
It is criticised for it's lack of standardised methodology. Furthermore to get accurate data all extraneous/background data must be removed - which is sometimes difficult.


Explain post-mortems

Post-mortems are when a person's brain is examined after their death. This usually happens to somebody who had a rare disorder or had unusual defects in cognitive functioning. Their brain and areas of it are studied to understand what their affliction was - it is also sometimes compared to a neurotypical brain.


Evaluate post-mortems

Post-mortems were pivotal in understanding key processes in the brain. Before neuroimaging Paul Broca and Karl Wernicke relied on post-mortems to establish links between language, behaviour and the brain. They also helped generate new hypotheses for research.
With post-mortems it is hard to establish causation. Damage may not be linked to mental deficits but other trauma or decay.
It is also hard to gain informed consent from patients. HM lost the ability to make memories and so therefore give informed consent; post mortems were still carried out on his brain though.


What are biological rhythms?

Bodily rhythms that influence the way that the body behave. They are governed by endogenous pacemakers and exogenous zeitgebers. So things occur many times a day - ultradian rhythms. others take longer than a day - infradian rhythms. Others take much longer - circannual rhythms. Circadian rhythms take a day to complete.


How is the Sleep Wake cycle governed?

Exogenous Zeitgebers - the fact that we feel drowsy during the night time and awake during the day time shows the effects of daylight.
Endogenous pacemakers - a biological clock that is controlled by our biology. If left unaffected by extenral factors it is said to be "free-running".
This basic rhythm is governed by the suprachiasmatic nucleus (SCN) which lies above the optic chiasm and receives information about light directly from this structure. The SCN can be reset by light.


Discuss the case study of Siffre

Siffre was a french caver who, on multiple occasions, spent several months in dark caves to investigate the effects of free-running biological rhythms. This was two months in the french alps in 1962 and six months in a Texan cave during the 70's.
In each study Siffre's free running circadian rhythm settled down to 25 hours - but he did have a regular sleep/wake cycle.


What was Aschoff and Weaver's study?

A group of participants spent four weeks in a WW2 bunker deprived of natural light. all but one of the participants developed a sleep/wake cycle of between 24 and 25 hours (the anomaly developed a cycle of 29 hours).
Combined with Siffre's study this suggests that the normal sleep/wake cycle is 25 hours, but it is kept en trained by exogenous zietgebers.


What did Folkard's study do?

Folkard studied a group of participants that lived in a dark cave for three weeks, going to bed at 11:45 and waking at 7:45. The researchers gradually sped up the clock so that the 24 hour day only lasted 22 hours.
Only one participant adjusted comfortably to the new regime. This suggests that a strong running circadian rhythm cannot be overridden by changes in the external environment.


What are two strengths of circadian rhythm research?

It has a practical application to shift work. Boivin et al (1966) found that shift workers experience a lapse of concentration around 6am (due to a circadian trough) which is when mistakes and accidents are more likely. Shift work is also linked to poor health - with shift workers more likely to develop heart disease. Thus research can help us know how to manage worker productivity.
It can also be applied to drug treatments. Circadian rhythms coordinate the body's basic processes with implications for pharmacokinetics (how the body absorbs and distributes drugs). Research shows that there are times when drugs are more or less effective and guidelines have been developed for timing and dosing treatments for cancer and epilepsy.


What are two limitations for research into circadian rhythms?

Use of case studies and small sample studies. Studies into the sleep/wake cycle often use small groups or individuals, so participants might not represent the wider population and this means we cannot make meaningful generalisations. For example Siffre observed that his internal clock was slower at 60, compared to when he was younger. This effects the validity as even when the same person is involved there are factors that effect general conclusions being drawn.
Poor control in research studies. Participants that were deprived of natural light still had access to artificial light, which was assumed to have no effect on free-running rhythms. However studies have found that it is possible to alter circadian rhythms using dim lighting, so using artificial lighting might reset participants biological clocks. This reduces the internal validity of the research as there is a confounding variable.


What did Wundt do?

Accredited with opening the first controlled psychology lab. Before this psychology was not controlled. He used introspection to break down conscious thoughts into basic categories.
First attempt to standardise methods - which increases reliability.
However there is low internal validity as we do not know what is causing the thoughts (introspection or other factors.)


How did Freud build upon Wundt?

He also looked at what was going onside the the brain. He used controlled environments to look at case studies and form his ideas of the psychodynamic approach. However it means that the study has low generalisation and cannot be falsified.


What is the nervous system?

The nervous system is a specialised network of cells and our primary communication system It has two main functions:
Collect, process and respond to information in the environment.
co-ordinate the workings of different cells in the body
It is divided into the central nervous system and the peripheral nervous system.


What is the structure of the central nervous system?

The CNS is made up of the brain and the spinal cord. The brain is the centre of all conscious awareness. The outer layer of the brain, the cerebral cortex, is highly developed and is what distinguishes our higher mental functions from those of animals.
The spinal cord is an extension of the brain and is responsible for reflex actions. It passes messages to and from the brain and connects nerves to the PNS.


What is the structure of the Peripheral nervous system?

The PNS transmits messages, via millions of neurons to and from the nervous system. The PNS is further sub-divided into the autonomic nervous system (ANS) and the the somatic nervous system (SNS).
The ANS governs vital functions in the body such as breathing, heart rate, digestion, sexual arousal and stress response. This is spilt into the sympathetic (activated during a stressful situation) and parasympathetic (resting state) systems.
The SNS controls muscle movement and receives information from sensory receptors.


What are the key features of the endocrine system?

The endocrine system works alongside in the nervous system to control vital functions in the body through the action of hormones. It works much more slowly than the nervous system but has widespread and powerful effects.


How are glands involved in the endocrine system?

They are organs that produce hormones. The major gland is called the pituitary gland, located in the brain, It is called the 'master gland' because it controls the release of hormones from all the other endocrine glands in the body.


How are hormones involved in the endocrine system?

They are secreted into the bloodstream and affect any cell that has a receptor for that hormone. For example thyroxine produced by the thyroid affects cells in the heart and throughout the body which increase metabolic rates. This affects growth rates.


How do the endocrine system and the ANS work together?

They often work in parallel, for example during a stressful event. When a stressor is perceived the hypothalamus triggers activity in the sympathetic branch of the ANS. The ANS then changes from normal resting state to physiologically aroused state.
Adrenaline is then released from the adrenal medulla into the bloodstream.
This then triggers physiological changes in target organs in the body and causes an increased heart rate, dilation of the pupils, stops digestion and contracts the rectum.
Once the threat has passed, the parasympathetic nervous system returns the body to its resting state. This reduces the actions of activities that were increased by the sympathetic system (this is known as the rest and digest response.