C midt Flashcards
Einthoven’s triangle) Negitive & Positive lead 1 sites:
Negitive & Positive lead 2 sites:
Negitive & Positive lead 3 sites:
=negative @ RA & positive @ LA
= negative @ RA & positive @ LL
= negative @ LA & positive @ LL
Poiseuille’s law:
Example:
= vessel w/ relative radius of 1 would transport 1mL per min at BP difference of 100mmHg. Keep pressure constant
= Less blood = vaso-press
Starling’s Law of heart:
= states that the more the myocardium is stretched, up to a certain amount, the more forceful the subsequent contraction will be
Arrhythmias) causes: 1.
2.
3.
4.
5.
6.
7.
8.
1.= Blood gas abnormalities (hypoxia & abnormal pH (haldane & Bohr)
2.= Electrolyte imbalances (Ca++, K+, Mg++)
3.= Trauma to myocardium
4.= Drug effects / toxicity
5.= Digoxin- can cause multitude of dysfunctions
6.= Myocardial ischemia, necrosis, infarction,
7.= ANS imbalance
8.= Chamber/s Distention
Atropine & Dopamine) 1. Med/ Admin/ for:
2. Atropine dosing:
3. Dopamine dosing:
(Symptomatic unstable) 4. S/S: go Cables! EX unconscious, RR<4,
5. Treatment:
Mili Amps MA (need to touch PT to feel pulse)
Pace ASAP to increase chance of pacing
1 = SBP greater than 90mmHg, “Stable to the table”
2= 1mg 3-5mins as needed (0.04mg/Kg (total 3mg)
3= “Real”2-5mcg, BC>5-10mcg/kg/min, Vaso-press> 10-20 mcg/kg/min
4= inadequate perfusion: hypoBP, AMS, etc)
5= “Straight 8 Cables!” PPM 60-80, (TCP)Transcutaneous Pacing ASAP
AV pace impulses relation w/ P waves)Atriums fire 1st then ventricles:
Atriums & Ventricles fire at same time:
Ventricles fire 1st then atriums fire 2nd:
= inverted P wave before QRS
= P wave hidden w/in QRD
= P wave after QRS (before T wave)
Blood Flow L-L) 1:
2:
3:
4:
5:
6:
7:
only vein carrying oxy/ blood:
only artery carrying deoxy: blood:
Intracardiac pressures Left>Right b/c:
= 1.Vena Cavas: recieves deoxy blood from body; SVC receives from head & upper extremities & IVC receives from areas below heart.
= 2. R-Atrium: receives deoxy blood from body via venae cavaes
= 3. R-Atrium: pumps blood through Tricuspid valve & into R-ventricle.
= 4. R-ventricle: pumps through Pulmonic valve to P/artery & on to lungs
= 5. Lungs: oxygenates blood & returns to L-atrium via pulmonary veins.
= 6. L-Atrium: sends oxygenated blood by mitral valve & into L-ventricle
= 7. L-Ventricle: pumps blood through Aortic valve>Aorta feeding oxygenated blood to the rest of the body.
= Pulmonic veins
= Pulmonary artery
= Lungs offer less resistance to blood flow than systemic circulation thus’ left myocardium is thicker than right)
Coronary) left coronary artery supplies:
Left coronary artery 2 major branches are:
= L-ventricle, Intraventricular septum, part of R-ventricle & lower conductive system
= anterior descending artery and the circumflex artery
CAD):
CVD):
= Coronary Artery disease: disease affecting coronary vessels
= Cardiovascular disease: affecting heart, peripheral blood vessels, or both
(Dysfunctions) Wandering pacemaker:
no P wave bc
No QRS:
Premature ventricular contractions:
R prime:
= > no similarities in P waves
= pathways/AV node dysfunction, block, or death
= AV node pacing and/or heart block
= Ventricle fires premature after initial ventricle contraction
= 2 R waves “dub hump” b/c pathways not in sync
Sinus Arrhythmia
= inconsistent RRs, possibly no/lil P waves, all other intervals WNL
Sinus Block) definer:
Rhythm:
P waves & PRIs:
Pacemaker site:
QRS Complexes:
= “flatline in cadence” SA node fires on time but impulse blocked
= Irregular Rhythm
= Present & normal, all followed by QRS complex, PRI: WNL
= SA Node
= Normal morphology & WNL
Sinus Bradycardia) definer:
Rhythm:
P waves & PRIs:
Pacemaker site:
QRS Complexes:
= <60BPM
= Regular Rhythm typically
= Present & normal, all followed by QRS complex, PRI: WNL
= SA Node typically
= Normal morphology & WNL
w/ Arrest) definer:
Rhythm:
P waves & PRIs:
Pacemaker site:
QRS Complexes:
= “Sinus pause on steroids”, large standstill, >1 drops
= Irregular Rhythm
= Present & normal, all followed by QRS complex, PRI: WNL
= SA Node
= Normal morphology & WNL
Sinus Tachycardia) definer:
Rhythm:
P waves & PRIs:
Pacemaker site:
QRS Complexes:
= 101 or more BPM “sharp narrow arrows”
= Regular Rhythm
= Present & normal, all followed by QRS complex, PRI: WNL
= SA Node
= Normal morphology & WNL
w/ Sinus Pause) definer:
Rate & Rhythm:
P waves & PRIs:
Pacemaker site:
QRS Complexes:
= Drop beat out of cadence & only 1 drop beat! “SA paused”
= normal or Brady & Regular Rhythm typically
= Present & normal, all followed by QRS complex, PRI: WNL
= SA Node
= Normal morphology & WNL
Horizontal Boxes) small box duration:
5 small boxes makes:
Each large box duration:
Vertical Boxes) Each small box volt & measurement:
5 small boxes makes:
Each large box voltage:
2 large boxes equivalent:
= 0.04 sec
= 1 large box
= 0.20 sec
= 0.1 mV & 1 mm
= 1 large box
= 0.5 mV
= 1 mV & 10mm
Vertical Boxes) Each small box is & what:
5 small boxes equal:
Each large box is:
2 large boxes equal
= Each small box 1 mm & 0.1mV
= 1 large box
= 0.5 mV & 5mm
= 1mV & 10mm
Einthoven’s triangle(Bipolar/limb leads) leads 2 views:
Lead 2 Negative:
Lead 2 Positive:
= Inferior wall diagonally towards left foot
= Right Arm
= Left Leg
Einthoven’s triangle(Bipolar/limb leads) leads 1 views:
Lead 1 Negative:
Lead 1 Positive:
= Left Lateral wall
= Right Arm
= Left Arm
Einthoven’s triangle(Bipolar/limb leads) leads 3 views:
Lead 3 Negative:
Lead 3 Positive:
= inferior (down & rightward) 50% MI has R ventricle Infarction
= Left Arm
= Left Leg
1 VT):
2 Definer:
3 note fusion P waves:
1= usually reentry prob
2= 100BPM or >, wide QRS
3= P waves trying to insert self in to VT
If the R is far from the P, then you have a:
FIRST DEGREE!
If some Ps don’t get through, then you have a:
= MOBITZ II!