Chapter 7- RNA and the Genetic Code Flashcards
monocistronic
eukaryotic mRNA is monocistronic, meaning that each mRNA molecule translates into only one protein product.
polycistronic
prokaryotic mRNA may be polycistronic, and starting translation at different locations in the mRNA can result in different proteins
aminoacyl-tRNA synthetase
different types activate different amino acids, requires 2 ATP
start codon
AUG (codes for methionine)
stop codon
UAA (U Are Annoying)
UGA (U Go Away)
UAG (U Are Gone)
only amino acids with one code
methionine and tryptophan
wobble position
third position for codon. usually the first two nucleotides are the same so the third is a variable one. mutations here are typically silent or degenerate mutations.
expressed mutations
- missense: one amino acid substitution
2. nonsense: mutation encodes for a premature stop codon (aka. truncation mutation)
TATA Box
promoter region for RNA polymerase II to bind during transcription. typically in -25 for gene location numbering system.
2 differences between DNA and RNA polymerases
RNA polymerases don’t require an RNA primer to start generating a transcript and they dont check their work, no editing done.
heterogeneous nuclear RNA (hnRNA)
primary transcript and after some modifications it becomes mRNA
steps between hmRNA and mRNA? (known as posttranscriptional processing)
- Intron/exon splicing
- 5’ cap
- 3’ poly-A tail
intron/exon splicing
spliceosome: made up of small nuclear RNA (snRNA) and small nuclear ribonucleoproteins (snRNPs). these recognize introns and cuts them out to form a lariat (lasso-shaped structure). they are then degraded.
introns- noncoding sequences are removed
exons- coding sequences are ligated
alternative splicing
primary transcript of hnRNA may be spliced together in different ways to produce multiple variants of proteins encoded by the same original gene. many more proteins made from limited genes
RNA Polymerase I
Synthesizes rRNA
RNA Polymerase II
Synthesizes mRNA (and hnRNA)
RNA Polymerase III
Synthesizes tRNA and some rRNA
3 steps in translation
- initiation
- elongation (APE sites)
- termination
*Note: all steps require energy
what happens at the P site for translation (during elongation)
peptide bond forms using peptidyl transferase (enzyme part of the large subunit). GTP used for energy.
chaperones
assist in protein folding
carboxylation
usually serves as a Ca2+ binding site
phosphorylation
usually activates or deactivates a protein
operon
cluster of genes transcribed as a single mRNA. 2 types: inducible and repressible systems. offer a simple on-off switch for gene control in prokaryotes.
Jacob-Monod Model of an operon
- regulator gene- codes for repressor protein
- promoter site- RNA polymerase binding site
- operator site- nontranscribable and can bind a repressor protein
- structural gene- codes for protein