Chemistry 3 - Quantitative Chemistry Flashcards

(581 cards)

1
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Relative Formula Mass (Mᵣ) definition The sum of the relative atomic masses (Aᵣ) of all atoms in a compound’s formula.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Calculate Mᵣ of MgCl₂ (Aᵣ: Mg=24

A

Cl=35.5) 24 + (2 × 35.5) = 95.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

% mass formula for an element in a compound (Aᵣ × number of atoms × 100) ÷ Mᵣ of compound.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

% mass of sodium in Na₂CO₃ (Aᵣ: Na=23

A

C=12

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Practice: Mass of FeCl₂ to provide 10g iron in a 20% iron mixture (Aᵣ: Fe=56

A

Cl=35.5) Step 1: 10g iron = 20% of 50g mixture. Step 2: % Fe in FeCl₂ = (56/127)×100 ≈ 44.1%. Step 3: Mass FeCl₂ = 10g ÷ 0.441 ≈ 22.7g.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Why mass INCREASES in an unsealed reaction A reactant gas (e.g.

A

oxygen) from air is added to the vessel

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Why mass DECREASES in an unsealed reaction A product gas (e.g.

A

CO₂) escapes the vessel

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Definition of a mole An amount of substance containing 6.02 × 10²³ particles (Avogadro’s number).

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Mass of 1 mole of a substance Equal to its Mᵣ in grams (e.g.

A

1 mole CO₂ = 44g).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Moles formula Number of moles = mass (g) ÷ Mᵣ.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Moles in 66g of CO₂ (Mᵣ=44) 66 ÷ 44 = 1.5 moles.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Mass of 4 moles of carbon (Aᵣ=12) 4 × 12 = 48g.

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
26
Law of conservation of mass No atoms are created/destroyed in reactions; total mass of reactants = total mass of products.
27
28
Prove mass is conserved in 2Li + F₂ → 2LiF Reactants: (2×7) + 38 = 52; Products: 2×26 = 52.
29
How to calculate reacting masses using moles Use moles = mass ÷ Mᵣ and the balanced equation's mole ratios.
30
31
Mole ratio in Mg + 2HCl → MgCl₂ + H₂ 1 mole Mg : 2 moles HCl : 1 mole MgCl₂ : 1 mole H₂.
32
33
Steps to balance equations using masses 1) Find moles (mass ÷ Mᵣ). 2) Divide by smallest moles. 3) Convert to whole numbers. 4) Write equation.
34
35
Balance: 8.1g ZnO + 0.60g C → 2.2g CO₂ + 6.5g Zn 1) Moles: ZnO=0.10
C=0.050
36
37
Limiting reactant definition The reactant completely used up first
stopping the reaction and limiting product amount.
38
39
Excess reactant definition Reactant not fully used up; added to ensure limiting reactant is consumed.
40
41
Why product mass depends on limiting reactant More limiting reactant = more product particles (directly proportional).
42
43
Steps to calculate product mass from limiting reactant 1) Write equation. 2) Find Mᵣ. 3) Calculate moles of known. 4) Use mole ratio. 5) Convert to mass.
44
45
Mass of Al₂O₃ from 135g Al (4Al + 3O₂ → 2Al₂O₃) 1) Moles Al=5. 2) Mole ratio (4:2) → 2.5 moles Al₂O₃. 3) Mass=2.5×102=255g.
46
Concentration definition A measure of how much solute is dissolved in a given volume of solution (units: g/dm³ or mol/dm³).
47
48
Formula for concentration (g/dm³) Concentration = mass of solute (g) ÷ volume of solvent (dm³).
49
50
Calculate concentration: 30g NaCl in 0.2dm³ water 30 ÷ 0.2 = 150 g/dm³.
51
52
Convert 500cm³ to dm³ 500 ÷ 1000 = 0.5 dm³.
53
54
Mass of solute needed for 24 g/dm³ in 0.40dm³ 24 × 0.40 = 9.6 g.
55
56
pH scale range 0 (acidic) to 14 (alkaline)
with 7 as neutral (e.g.
57
58
Acid definition Substance with pH <7; forms H⁺ ions in water (e.g.
lemon juice
59
60
Base vs. Alkali Base: pH >7; Alkali: base dissolved in water (forms OH⁻ ions
e.g.
61
62
Neutralisation reaction Acid + Base → Salt + Water or H⁺(aq) + OH⁻(aq) → H₂O(l).
63
64
How to measure pH 1) Indicator (color change
e.g.
65
What ions do acids produce in water? Hydrogen ions (
66
H
67
+
68
H
69
+
70
)
e.g.
71
H
72
C
73
l
74
75
H
76
+
77
+
78
C
79
l
80
81
HCl→H
82
+
83
+Cl
84
85
.
86
87
Strong acid vs. weak acid Strong: Fully ionizes (e.g.
HCl). Weak: Partially ionizes (e.g.
88
89
pH and
90
H
91
+
92
H
93
+
94
ion relationship Each pH decrease by 1 =
95
10
96
×
97
10× increase in
98
H
99
+
100
H
101
+
102
concentration.
103
104
pH 4 vs. pH 5 acid pH 4 has 10× more
105
H
106
+
107
H
108
+
109
than pH 5.
110
111
Concentration vs. strength Concentration: Amount of acid per volume. Strength: % ionized (strong/weak).
112
113
Dilute strong acid example 0.1M HCl (fully ionized but low concentration).
114
115
Neutralization reaction formula
116
A
117
c
118
i
119
d
120
+
121
B
122
a
123
s
124
e
125
126
S
127
a
128
l
129
t
130
+
131
W
132
a
133
t
134
e
135
r
136
Acid+Base→Salt+Water.
137
138
Acid + metal oxide example
139
2
140
H
141
C
142
l
143
+
144
C
145
u
146
O
147
148
C
149
u
150
C
151
l
152
2
153
+
154
H
155
2
156
O
157
2HCl+CuO→CuCl
158
2
159
160
+H
161
2
162
163
O.
164
165
Acid + metal hydroxide example
166
H
167
2
168
S
169
O
170
4
171
+
172
2
173
K
174
O
175
H
176
177
K
178
2
179
S
180
O
181
4
182
+
183
2
184
H
185
2
186
O
187
H
188
2
189
190
SO
191
4
192
193
+2KOH→K
194
2
195
196
SO
197
4
198
199
+2H
200
2
201
202
O.
203
204
Acid + carbonate products Salt + Water + Carbon dioxide (
205
C
206
O
207
2
208
CO
209
2
210
211
).
212
213
Making copper chloride
214
C
215
u
216
O
217
+
218
2
219
H
220
C
221
l
222
223
C
224
u
225
C
226
l
227
2
228
+
229
H
230
2
231
O
232
CuO+2HCl→CuCl
233
2
234
235
+H
236
2
237
238
O; filter excess CuO
crystallize.
239
240
Testing for
241
C
242
O
243
2
244
CO
245
2
246
247
Bubble through limewater → turns cloudy.
248
249
Key Notes:
250
Reactivity series order (high to low) Potassium (K)
Sodium (Na)
251
252
How reactivity is determined By how easily metals lose electrons to form positive ions.
253
254
Metal + acid reaction products Salt + hydrogen gas (e.g.
255
F
256
e
257
+
258
2
259
H
260
C
261
l
262
263
F
264
e
265
C
266
l
267
2
268
+
269
H
270
2
271
Fe+2HCl→FeCl
272
2
273
274
+H
275
2
276
277
).
278
279
Observations of reactivity More reactive metals (e.g.
Mg) react vigorously; less reactive (e.g.
280
281
Metal + water reaction products Metal hydroxide + hydrogen (e.g.
282
C
283
a
284
+
285
2
286
H
287
2
288
O
289
290
C
291
a
292
(
293
O
294
H
295
)
296
2
297
+
298
H
299
2
300
Ca+2H
301
2
302
303
O→Ca(OH)
304
2
305
306
+H
307
2
308
309
).
310
311
Metals reacting with water K
Na
312
313
Oxidation definition Gain of oxygen (e.g.
314
2
315
M
316
g
317
+
318
O
319
2
320
321
2
322
M
323
g
324
O
325
2Mg+O
326
2
327
328
→2MgO).
329
330
Reduction definition Loss of oxygen (e.g.
331
2
332
C
333
u
334
O
335
+
336
C
337
338
2
339
C
340
u
341
+
342
C
343
O
344
2
345
2CuO+C→2Cu+CO
346
2
347
348
).
349
350
Extraction method depends on reactivity
351
352
Above carbon (e.g.
Al): Electrolysis (expensive).
353
354
Below carbon (e.g.
Fe): Reduction using carbon (e.g.
355
356
Why carbon reduces metal oxides Carbon can only remove oxygen from metals less reactive than itself.
357
358
Example of carbon reduction
359
2
360
F
361
e
362
2
363
O
364
3
365
+
366
3
367
C
368
369
4
370
F
371
e
372
+
373
3
374
C
375
O
376
2
377
2Fe
378
2
379
380
O
381
3
382
383
+3C→4Fe+3CO
384
2
385
386
.
387
388
Unreactive metals in nature Gold (Au) found as pure metal; no extraction needed.
389
OIL RIG mnemonic Oxidation Is Loss (of e⁻)
Reduction Is Gain (of e⁻).
390
391
Redox example (Fe + HCl) Fe oxidized:
392
F
393
e
394
395
F
396
e
397
2
398
+
399
+
400
2
401
e
402
403
Fe→Fe
404
2+
405
+2e
406
407
H⁺ reduced:
408
2
409
H
410
+
411
+
412
2
413
e
414
415
416
H
417
2
418
2H
419
+
420
+2e
421
422
→H
423
2
424
425
.
426
427
Displacement reaction rule More reactive metal displaces less reactive metal from its compound (see reactivity series).
428
429
Fe + CuSO₄ reaction
430
F
431
e
432
+
433
C
434
u
435
S
436
O
437
4
438
439
F
440
e
441
S
442
O
443
4
444
+
445
C
446
u
447
Fe+CuSO
448
4
449
450
→FeSO
451
4
452
453
+Cu
Fe oxidized, Cu²⁺ reduced.
454
455
Electrolysis definition Splitting ionic compounds using electricity
requires molten/aqueous electrolyte.
456
457
Electrode reactions Cathode (-): Reduction (gain e⁻). Anode (+): Oxidation (lose e⁻).
458
459
Molten PbBr₂ electrolysis Cathode:
460
P
461
b
462
2
463
+
464
+
465
2
466
e
467
468
469
P
470
b
471
Pb
472
2+
473
+2e
474
475
→Pb. Anode:
476
2
477
B
478
r
479
480
481
B
482
r
483
2
484
+
485
2
486
e
487
488
2Br
489
490
→Br
491
2
492
493
+2e
494
495
.
496
497
Aluminium extraction Electrolysis of molten Al₂O₃ (mixed with cryolite).
498
499
Cathode:
500
A
501
l
502
3
503
+
504
+
505
3
506
e
507
508
509
A
510
l
511
Al
512
3+
513
+3e
514
515
→Al.
516
517
Anode:
518
2
519
O
520
2
521
522
523
O
524
2
525
+
526
4
527
e
528
529
2O
530
2−
531
→O
532
2
533
534
+4e
535
536
.
537
538
Aqueous electrolysis rules
539
540
Cathode: H⁺ discharged if metal > H (e.g., Na⁺ → H₂)
else metal forms (e.g., Cu²⁺ → Cu).
541
542
Anode: Halides form X₂ (e.g., Cl₂)
else OH⁻ → O₂.
543
544
NaCl(aq) electrolysis products Cathode: H₂ gas. Anode: Cl₂ gas.
545
546
Testing electrolysis gases
547
548
Cl₂: Bleaches litmus.
549
550
H₂: "Squeaky pop" with splint.
551
552
O₂: Relights glowing splint.
553
554
Balancing half-equations Ensure e⁻ balance (e.g.,
555
4
556
O
557
H
558
559
560
O
561
2
562
+
563
2
564
H
565
2
566
O
567
+
568
4
569
e
570
571
4OH
572
573
→O
574
2
575
576
+2H
577
2
578
579
O+4e
580
581
).