Communities and Ecosystems Flashcards
(48 cards)
define species
a group of organisms that can interbreed and produce fertile offspring.
define habitat
the environment in which a species normally lives or the location of a living organism.
define population
a group of organisms of the same species who live in the same area at the same time.
define community
a group of populations living and interacting with each other in an area.
define ecosystem
a community and its abiotic environment.
define ecology
the study of relationships between living organisms and between organisms and their environment.
Distinguish between autotroph and heterotroph.
Autotrophs are organisms that synthesize their organic molecules from simple inorganic substances whereas heterotrophs are organisms that obtain organic molecules from other organisms.
Distinguish between consumers, detritivores and saprotrophs.
Consumer: an organism that ingests other organic matter that is living or recently killed.
Detritivore: an organism that ingests non-living organic matter.
Saprotroph: an organism that lives on or in non-living organic matter, secreting digestive enzymes into it and absorbing the products of digestion.
Distinguish between consumers, detritivores and saprotrophs.
Consumer: an organism that ingests other organic matter that is living or recently killed.
Detritivore: an organism that ingests non-living organic matter.
Saprotroph: an organism that lives on or in non-living organic matter, secreting digestive enzymes into it and absorbing the products of digestion.
Describe what is meant by a food chain, giving three examples, each with at least three linkages (four organisms).
A food chain shows the direction of energy flow from one species to another. For example, an arrow from A to B means that A is being eaten by B and therefore indicates the direction of the energy flow.
Describe what is meant by a food web.
A food web is a diagram that shows all the feeding relationships in a community with arrows which show the direction of the energy flow.
Define trophic level.
Trophic level: the trophic level of an organism is its position in the food chain. Producers, primary consumers, secondary consumers and tertiary consumers are examples of trophic levels.
Deduce the trophic level of organisms in a food chain and a food web.
Plants or any other photosynthetic organisms are the producers. Primary consumers are the species that eat the producers. Secondary consumers are the species that eat the primary consumers and tertiary consumers in turn eat the secondary consumers.
What is the energy source for almost all communities?
Light is the initial energy source for almost all communities.
Explain the energy flow in a food chain.
Producers receive their energy from light energy (the sun) by means of photosynthesis. After this, the energy in organic matter flows from producers to primary consumers to secondary consumers to tertiary consumers. This is because producers will be eaten by primary consumers which in turn will be eaten by secondary consumers and so on. However, between these trophic levels, energy is always lost. All of the trophic levels lose energy as heat through cell respiration. Also, as the organic matter passes from one trophic level to the next, not all of it is digested and so we have loss of energy in organic matter through feces. This energy then passes on to the detritivores and saprotrophs. Another energy loss occurs through tissue loss and death which can happen at any trophic level. Once again, this energy would be passed on to detritivores and saprotrophs as they digest these. Detritivores and saprotrophs in turn lose energy as heat through cell respiration.
summarize the energy flow in an ecosystem
Energy flows from producers to primary consumers, to secondary consumers, to tertiary consumers…
Energy is lost between trophic levels in the form of heat through cell respiration, faeces, tissue loss and death.
Some of this lost energy is used by detritivores and saprotrophs. These in turn also lose energy in the form of heat through cell respiration.
How efficient can energy transformation be?
Energy transformations are never 100% efficient.
Explain reasons for the shape of pyramids of energy.
yikes
Explain that energy enters and leaves ecosystems, but nutrients must be recycled.
Energy is not recycled. It is constantly being supplied to ecosystems through light energy and then flows through the trophic levels. As it flows through the trophic levels energy is lost in feces, tissue loss and death. This energy from these losses is passed on to detritivores and saprotrophs. However the energy is then lost from the ecosystem as the remaining energy in the trophic levels and the energy in the saprotrophs and detritivores is lost through cell respiration in the form of heat. As a result, energy needs to be constantly supplied to the ecosystems. Nutrients on the other hand are different as they constantly have to be recycled. Carbon, nitrogen and phosphorus are all examples of nutrients. There is only a limited supply of these as they are not resupplied to the ecosystems like energy. Therefor they have to be recycled over and over. They are absorbed from the environment, used by living organisms and then returned to the environment.
Summary:
Energy is not recycled. Constantly being supplied to the ecosystem through light energy.
Energy is lost from the ecosystem in the form of heat through cell respiration.
Nutrients must be recycled as there is only a limited supply of them.
They are absorbed by the environment, used by organisms and then returned to the environment.
What recycles nutrients?
Saprotrophic bacteria and fungi (decomposers) recycle nutrients.
Analyse the changes in concentration of atmospheric carbon dioxide using historical records.
concerning
Explain the relationship between rises in concentrations of atmospheric carbon dioxide, methane and oxides of nitrogen and the enhanced greenhouse effect.
The earths mean average temperature is regulated by a steady equilibrium which exists between the energy reaching the earth from the sun and the energy reflected by the earth back into space. The incoming radiation is short wave ultraviolet and visible radiation. Some of the radiation will be absorbed by the atmosphere and some of it will be reflected back from the earths surface into space. The radiation that is reflected back into space is infrared radiation which has a longer wavelength. Green house gases such as carbon dioxide, methane, and oxides of nitrogen tend to absorb some of the reflected infrared radiation and re-reflect it back towards the earth. This is what causes the greenhouse effect and it results in an increase in average mean temperature on earth. It is a natural phenomenon. However, since there has been an increase in the green house gases in the past century, this has resulted in an increase of the green house effect leading to higher than normal average temperatures which could lead to disastrous consequences in the future.
Summary:
The incoming radiation from the sun is short wave ultraviolet and visible radiation.
Some of this radiation is absorbed by the earths atmosphere.
Some of the radiation is reflected back into space by the earths surface.
The radiation which is reflected back into space is infrared radiation and has a longer wavelength.
The greenhouse gases in the atmosphere absorbe some of this infrared radiation and re-reflect it back towards the earth.
This causes the green house effect and results in an increase in average mean temperatures on earth.
A rise in greenhouse gases results in an increase of the green house effect which can be disastrous for the planet.
Outline the precautionary principle.
The precautionary principle holds that, if the effects of a human-induced change would be very large, perhaps catastrophic, those responsible for the change must prove that it will not do harm before proceeding. This is the reverse of the normal situation, where those who are concerned about the change would have to prove that it will do harm in order to prevent such changes going ahead.
Evaluate the precautionary principle as a justification for strong action in response to the threats posed by the enhanced greenhouse effect.
There is strong evidence that shows that green house gases are causing global warming. This is very worrying as global warming has so many consequences on ecosystems. If nothing is done, and the green house gases are in fact causing the enhanced green house effect, by the time we realize it, it will probably be too late and result in catastrophic consequences. So even though there is no proof for global warming, the strong evidence suggesting that it is linked with an increase in green house gases is something we can not ignore. Global warming is a global problem. It affects everyone. For these reasons, the precautionary principle should be followed. Anyone supporting the notion that we can continue to emit same amounts or more of the green house gases should have to provide evidence that it will not cause a damaging increase in the green house effect.