Derivatives Flashcards
(23 cards)
If f(x) = c then f’(x) = __
f’(x) = 0
If f(x) = xⁿ then f’(x) = __
f’(x) = nxⁿ⁻¹
If f(x) = c ⋅xⁿ then f’(x) = __
f’(x) = c ⋅nxⁿ⁻¹
If f(x) = u(x) ± v(x) then f’(x) =
f’(x) = u’(x) ± v’(x)
If f(x) = u(x) ⋅ v(x) then f’(x) = __
f’(x) = u(x) ⋅ v’(x) + v(x) ⋅ u’(x)
If f(x) = u(x) / v(x) then f’(x) = __
f’(x) = (v(x) ⋅ u’(x) - u(x) ⋅ v’(x)) / (v(x))²
If f(x) = sin x then f’(x) = __
f’(x) = cos x
If f(x) = cos x then f’(x) = __
f’(x) = -sin x
If f(x) = tan x then f’(x) = __
f’(x) = sec² x
If f(x) = cot x then f’(x) = __
f’(x) = -csc² x
If f(x) = sec x then f’(x) = __
f’(x) = sec x ⋅ tan x
If f(x) = csc x then f’(x) = __
f’(x) = -csc x ⋅ cot x
If f(n) = aⁿ then f’(n) = __
f’(n) = aⁿ ⋅ ln a
If f(n) = eⁿ then f’(n) = __
f’(n) = eⁿ
If f(x) = ln x then f’(x) = __
f’(x) = 1 / x
If f(x) = log(base b)x then f’(x) = __
f’(x) = 1 / (x ⋅ ln b)
If h(x) = f(g(x)) then h’(x) = __
h’(x) = f’(g(x))⋅g’(x)
If f(x) = arcsin x then f’(x) = __
f’(x) = 1 / √(1-x²) (think more generally)
If f(x) = arccos x then f’(x) = __
f’(x) = -1 / √(1-x²) (think more generally)
If f(x) = arctan x then f’(x) = __
f’(x) = 1 / (1 + x²) (think more generally)
If f(x) = arccot x then f’(x) = __
f’(x) = -1 / (1 + x²) (think more generally)
If f(x) = arcsec x then f’(x) = __
f’(x) = 1 / (x√(x²-1)) (think more generally)
If f(x) = arccsc x then f’(x) = __
f’(x) = -1 / (x√(x²-1)) (think more generally)