Differentiation And Integration Rules Flashcards
(15 cards)
∫x^n dx = ?
(x^n)’ = ?
∫x^n dx = (1/n+1)x^n+1 + C
(x^n)’ = nx^n-1
∫(1/x)dx = ?
(ln|x|)’ = ?
(lnx)’ = ?
∫(1/x)dx = ln|x| + C
(ln|x|)’ = 1/x
(lnx)’ = 1/x
∫(e^x)dx = ?
(e^x) = ?
∫(e^x)dx = e^x + C
(e^x) = e^x
∫cosxdx = ?
(cosx)’ = ?
∫cosxdx = sinx + C
(cosx)’ = -sinx
∫sinxdx = ?
(sinx)’ = ?
∫sinxdx = -cosx + C
(sinx)’ = cosx
∫sec^2 x dx = ?
(tanx)’ = ?
∫sec^2 x dx = tanx + C
(tanx)’ = sec^2 x
∫secxtanxdx = ?
(secx)’ = ?
∫secxtanxdx = secx + C
(secx)’ = secxtanx
∫tanxdx = ?
∫tanxdx = ln|secx| + C
∫secxdx = ?
∫secxdx = ln|secx + tanx| + C
∫csc^2 x dx = ?
(cotx)’ = ?
∫csc^2 x dx = -cotx + C
(cotx)’ = -csc^2 x
∫cscxcotxdx = ?
(cscx)’ = ?
∫cscxcotxdx = -cscx + C
(cscx)’ = -cscxcotx
∫cotxdx = ?
∫cotxdx = ln|sinx| + C
∫cscxdx = ?
∫cscxdx = ln|cscx - cotx|+ C
= -ln|cscx + cotx| + C
∫(1/sqrt(a^2 - x^2))dx = ?
(sin^-1 x)’ = ?
∫(1/sqrt(a^2 - x^2))dx = sin^-1 (x/a) + C
(sin^-1 x)’ = 1/sqrt(1 - x^2)
∫(1/sqrt(a^2 + x^2))dx = ?
(tan^-1 x) = ?
∫(1/sqrt(a^2 + x^2))dx = (1/a)tan^-1 (x/a) + C
(tan^-1 x) = 1/(1 + x^2)