Equation rules Flashcards
(31 cards)
Addition
10x +2x =
10x +2x = 12x
Order of operations
BRIDMAS
- First BRACKETS
- Then INDICES
- Then DIVISION OR MULTIPLICATION
- Then ADDITION OR SUBSTRACTION
Addition
5x +3y + 10x=
5x+3y +10x=
5x+10x+ 3y=
15x +3y (we cannot simplify more)
Subtraction
10x -3x=
10x -3x=
7x
Subtraction
10x +3y -5x=
10x+3y-5x=
10x-5x+3y=
5x +3y
Subtraction
10x+4xy - 2xy -11x=
10x + 4xy - 2xy - 11x=
You need to group the x and xy
10x -11x + 4xy- 2xy=
-x+2xy
Multiplication
2x * 3x=
2x * 3x=
6x^2
(6 x to the power of 2)
You need to group the number and then the x
Multiplication
3xy *4y^2
3xy * 4y^2=
12 x y^3
(12 x y to the power of 3)
Group number then the x and y
Division
12x / 2
12 x / 2=
6x
group the numbers first then x
Division
6xy / (2x)
6xy / (2x)=
3y (group the numbers first then the x and y)
Division
12 (x^5) / [6 (x^3)]
12 (x^5) / [6(x^3)]=
2 x^2
Group the numbers first then the x
96/4 - 4=
96/4 - 4= 24 - 4= 20
36/9 + 1=
36/9 + 1= 4 +1 = 5
(10-X) x 4 = 36
(10-X) x 4 = 36
(10 - x)= 36/4 = 9
10-9= x
1=x
8+3 x 4- 6=
8+3 x 4- 6=
8 + 12 -6=
14
(3+1)^2 x2 +5=
(3+1)^2 x2 +5=
4^2 x 2 + 5=
16 x 2 + 5=
32 + 5=
37
160 / (3+7)=
160 / (3+7)=
160/ 10= 16
(-3)^3 - (-2)^3 - square root (16)=
(-3)^3 - (-2)^3 - square root (16)=
-27 - (-8) - 4=
-27 +8 -4=
-23
[(-3)^2 + (-2)^3]^2 + square root (27) - (-1)=
[(-3)^2 + (-2)^3]^2 + square root (27) - (-1)=
[9 -8]^2 +3 +1=
1^2 +3 +1=
1 +3+1= 5
Write as an expression “I start with a number p and multiply it by 25 then I subtract 7 before dividing it by 3”
(25p-7)/3 =
Write as an algebraic expression
The product of a and c is divided by b
(axc)/b= ac/b
Simplify 3 y^2 + 4ab + 7y^2 +ab
3 y^2 + 4ab + 7y^2 +ab=
(3y^2 + 7y^2) + (4ab +ab)=
10 y^2 + 5ab
Simplify 3q + 4pq - 2q +3qp + 4
3q + 4pq - 2q +3qp + 4=
(3q-2q) + 4pq +3qp +4=
q +7pq+4
Multiplying expression
3a x 2b x 5c=
3a x 2b x 5c=
3x2x5xaxbxc=
30abc