Final Exam Equations Flashcards
(16 cards)
angle between u and v
u * v = ||u|| ||v|| cos θ
proj v u (project of u onto v)
((u*v)/(||v||)^2)v
||u x v||
||u|| ||v|| sin θ
area of a parallagram
u * (v x w) = ||u|| ||v x w|| cos θ
angle between planes
cos (θ) = (|n1*n2|)/||n1|| ||n2||
distances between planes
|<x-x0, y-y0, z-z0>*n|/||n||
arc length
∫√(x’(t))^2 + (y’(t))^2 + (z’(t))^2 dt or ∫ ||r’(t)|| dt = S(t)
unit tanget
T(t) = r’(t) / ||r’(t)||
one curvature fomrula
K = ||dT/ds||
another curvature formula
K = ||(dT/dt)||/ ||r’(t)||
Unit Normal Vector
N(t) = T’(t)/ ||T’(t)||
Binormal Vector (normal vector of the osculating plane)
B(t) = T(t) x N(t)
Lineralization of (x, y) at (a, b)
L(x, y) = fx(a, b)(x-a) + fy(a, b)(y-b) + f(a, b)
Implicit Differation
dz/dx = -(df/dx)/(df/dx)
direction derivative
D u f =