Forms and Rules Flashcards
(20 cards)
Fallacy of affirming the Consequent
If A, then B
B
So, A
Fallacy of denying the Antecedent
If A, then B
Not A
So, Not B
Modus Ponens (MP) Implicational Rule
p→q
p
∴ q
Modus Tollens (MT) Implicational Rule
p→q
̴ q
∴ ̴ p
Hypothetical Syllogism (HS) Implicational Rule
p→q
q→r
∴ p→r
Disjunctive Syllogism (DS) Implicational Rule
p ᵥ q p ᵥ q
̴ q ̴ p
∴ p ∴ q
Constructive Dilemma (CD) Implicational Rule
p ᵥ q
p→r
q→s
∴ r ᵥ s
Simplification (Simp)
Implicational Rule
p ⦁ q p ⦁ q
∴ p ∴ q
Conjunction (Conj)
Implicational Rule
p
q
∴ p ⦁ q
Addition (Add)
Implicational Rule
p
∴ p ᵥ q
Double Negation (DN) Equivalence Rule
p ꞉꞉ ̴ ̴ p
Commutation (Com)
Equivalence Rule
(p ᵥ q) ꞉꞉ (q ᵥ p)
p ⦁ q) ꞉꞉ (q ⦁ p
Association (As)
Equivalence Rule
(p ᵥ (q ᵥ r)) ꞉꞉ ((p ᵥ q) ᵥ r)
p ⦁ (q ⦁ r)) ꞉꞉ ((p ⦁ q) ⦁ r
De Morgans Laws (DeM)
Equivalence Rule
̴ (p ⦁ q) ꞉꞉ ( ̴ p ᵥ ̴ q)
̴ (p ᵥ q) ꞉꞉ ( ̴ p ⦁ ̴ q)
Contraposition (Cont)
Equivalence Rule
(p → q) ꞉꞉ ( ̴ q → ̴ p)
Distribution (Dist)
Equivalence Rule
(p ⦁ (q ᵥ r)) ꞉꞉ ((p ⦁ q) ᵥ (p ⦁ r))
p ᵥ (q ⦁ r)) ꞉꞉ ((p ᵥ q) ⦁ (p ᵥ r)
Exportation (Ex)
Equivalence Rule
((p ⦁ q) → r) ꞉꞉ ((p → (q → r))
Redundancy (Re)
Equivalence Rule
p ꞉꞉ (p ⦁ p)
p ꞉꞉ (p ᵥ p)
Material Equivalence (Me) Equivalence Rule
(p ↔ q) ꞉꞉ ((p → q) ⦁ (q → p))
p ↔ q) ꞉꞉ ((p ⦁ q) ᵥ ( ̴p ⦁ ̴q)
Material Implication (MI) Equivalence Rule
(p → q) ꞉꞉ ( ̴p ᵥ q)